Distributed Swarm Collision Avoidance Based on Angular Calculations
- URL: http://arxiv.org/abs/2108.12934v1
- Date: Sun, 29 Aug 2021 23:12:38 GMT
- Title: Distributed Swarm Collision Avoidance Based on Angular Calculations
- Authors: SeyedZahir Qazavi and Samaneh Hosseini Semnani
- Abstract summary: In this paper, a distributed and real-time algorithm for dense and complex 2D and 3D environments is proposed.
It uses angular calculations to select the optimal direction for the movement of each robot.
The proposed method is shown to enable fully autonomous navigation of a swarm of crazyflies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collision avoidance is one of the most important topics in the robotics
field. The goal is to move the robots from initial locations to target
locations such that they follow shortest non-colliding paths in the shortest
time and with the least amount of energy. In this paper, a distributed and
real-time algorithm for dense and complex 2D and 3D environments is proposed.
This algorithm uses angular calculations to select the optimal direction for
the movement of each robot and it has been shown that these separate
calculations lead to a form of cooperative behavior among agents. We evaluated
the proposed approach on various simulation and experimental scenarios and
compared the results with FMP and ORCA, two important algorithms in this field.
The results show that the proposed approach is at least 25% faster than ORCA
and at least 7% faster than FMP and also more reliable than both methods. The
proposed method is shown to enable fully autonomous navigation of a swarm of
crazyflies.
Related papers
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.
We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - FRAME: A Modular Framework for Autonomous Map Merging: Advancements in the Field [12.247977717070773]
This article presents a novel approach for merging 3D point cloud maps in the context of egocentric multi-robot exploration.
The proposed approach leverages state-of-the-art place recognition and learned descriptors to efficiently detect overlap between maps.
The effectiveness of the proposed framework is successfully demonstrated through multiple field missions of robot exploration.
arXiv Detail & Related papers (2024-04-27T20:54:15Z) - Accelerating Search-Based Planning for Multi-Robot Manipulation by Leveraging Online-Generated Experiences [20.879194337982803]
Multi-Agent Path-Finding (MAPF) algorithms have shown promise in discrete 2D domains, providing rigorous guarantees.
We propose an approach for accelerating conflict-based search algorithms by leveraging their repetitive and incremental nature.
arXiv Detail & Related papers (2024-03-29T20:31:07Z) - Neural Implicit Swept Volume Models for Fast Collision Detection [0.0]
We present an algorithm combining the speed of the deep learning-based signed distance computations with the strong accuracy guarantees of geometric collision checkers.
We validate our approach in simulated and real-world robotic experiments, and demonstrate that it is able to speed up a commercial bin picking application.
arXiv Detail & Related papers (2024-02-23T12:06:48Z) - A Conflict-Aware Optimal Goal Assignment Algorithm for Multi-Robot
Systems [6.853165736531941]
A multi-robot application aims to assign a unique goal to each robot while ensuring collision-free paths.
We propose an efficient conflict-guided method to compute the next best assignment.
We extensively evaluate our algorithm for up to a hundred robots on several benchmark workspaces.
arXiv Detail & Related papers (2024-02-19T19:04:19Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions.
Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr"odinger Bridge problem.
In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step.
arXiv Detail & Related papers (2022-11-02T14:35:13Z) - Prioritized SIPP for Multi-Agent Path Finding With Kinematic Constraints [0.0]
Multi-Agent Path Finding (MAPF) is a long-standing problem in Robotics and Artificial Intelligence.
We present a method that mitigates this issue to a certain extent.
arXiv Detail & Related papers (2021-08-11T10:42:11Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T17:38:48Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
We propose a camera-based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network.
The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames.
We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field.
arXiv Detail & Related papers (2020-06-07T08:18:31Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.