Accelerating Search-Based Planning for Multi-Robot Manipulation by Leveraging Online-Generated Experiences
- URL: http://arxiv.org/abs/2404.00143v1
- Date: Fri, 29 Mar 2024 20:31:07 GMT
- Title: Accelerating Search-Based Planning for Multi-Robot Manipulation by Leveraging Online-Generated Experiences
- Authors: Yorai Shaoul, Itamar Mishani, Maxim Likhachev, Jiaoyang Li,
- Abstract summary: Multi-Agent Path-Finding (MAPF) algorithms have shown promise in discrete 2D domains, providing rigorous guarantees.
We propose an approach for accelerating conflict-based search algorithms by leveraging their repetitive and incremental nature.
- Score: 20.879194337982803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An exciting frontier in robotic manipulation is the use of multiple arms at once. However, planning concurrent motions is a challenging task using current methods. The high-dimensional composite state space renders many well-known motion planning algorithms intractable. Recently, Multi-Agent Path-Finding (MAPF) algorithms have shown promise in discrete 2D domains, providing rigorous guarantees. However, widely used conflict-based methods in MAPF assume an efficient single-agent motion planner. This poses challenges in adapting them to manipulation cases where this assumption does not hold, due to the high dimensionality of configuration spaces and the computational bottlenecks associated with collision checking. To this end, we propose an approach for accelerating conflict-based search algorithms by leveraging their repetitive and incremental nature -- making them tractable for use in complex scenarios involving multi-arm coordination in obstacle-laden environments. We show that our method preserves completeness and bounded sub-optimality guarantees, and demonstrate its practical efficacy through a set of experiments with up to 10 robotic arms.
Related papers
- Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
Simultaneous MRMP Diffusion (SMD) is a novel approach integrating constrained optimization into the diffusion sampling process to produce kinematically feasible trajectories.
The paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints.
arXiv Detail & Related papers (2025-02-05T20:51:28Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.
This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - A Hybrid Evolutionary Approach for Multi Robot Coordinated Planning at Intersections [0.0]
Coordinated multi-robot motion planning at intersections is key for safe mobility in roads, factories and warehouses.
We propose a new evolutionary-based algorithm using a parametric lattice-based configuration and the discrete-based RRT for collision-free multi-robot planning at intersections.
arXiv Detail & Related papers (2024-12-02T03:40:04Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
We present an efficient motion planning framework for simultaneously solving locomotion, grasping, and contact problems.
We demonstrate our proposed framework in the hardware experiments, showing that the multi-limbed robot is able to realize various motions including free-climbing at a slope angle 45deg with a much shorter planning time.
arXiv Detail & Related papers (2022-07-04T13:52:10Z) - Distributing Collaborative Multi-Robot Planning with Gaussian Belief
Propagation [13.65857209749568]
We demonstrate a new purely distributed technique based on a generic factor graph defining dynamics and collision constraints.
We show that our method allows extremely high performance collaborative planning in a simulated road traffic scenario.
arXiv Detail & Related papers (2022-03-22T11:13:36Z) - Distributed Allocation and Scheduling of Tasks with Cross-Schedule
Dependencies for Heterogeneous Multi-Robot Teams [2.294915015129229]
We present a distributed task allocation and scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal and precedence constraints.
An application of the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.
arXiv Detail & Related papers (2021-09-07T13:44:28Z) - Prioritized SIPP for Multi-Agent Path Finding With Kinematic Constraints [0.0]
Multi-Agent Path Finding (MAPF) is a long-standing problem in Robotics and Artificial Intelligence.
We present a method that mitigates this issue to a certain extent.
arXiv Detail & Related papers (2021-08-11T10:42:11Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.