Ultrastrong magnetic light-matter interaction with cavity mode
engineering
- URL: http://arxiv.org/abs/2108.13266v2
- Date: Thu, 18 May 2023 21:18:13 GMT
- Title: Ultrastrong magnetic light-matter interaction with cavity mode
engineering
- Authors: Hyeongrak Choi, Dirk Englund
- Abstract summary: We present techniques to create resonators with ultrasmall mode volume and ultrahigh quality factor.
We show that it is possible to achieve an arbitrarily small mode volume only limited by materials or fabrication with minimal quality-factor degradation.
These methods enable new applications from high-cooperativity microwave-spin coupling in quantum computing or compact electron paramagnetic resonance sensors to fundamental science such as dark matter searches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic interaction between photons and dipoles is essential in electronics,
sensing, spectroscopy, and quantum computing. However, its weak strength often
requires resonators to confine and store the photons. Here, we present mode
engineering techniques to create resonators with ultrasmall mode volume and
ultrahigh quality factor. In particular, we show that it is possible to achieve
an arbitrarily small mode volume only limited by materials or fabrication with
minimal quality-factor degradation. We compare mode-engineered cavities in a
trade-off space and show that the magnetic interaction can be strengthened more
than $10^{16}$ times compared to free space. Proof-of-principles experiments
using an ensemble of diamond nitrogen-vacancy spins show good agreement with
our theoretical predictions. These methods enable new applications from
high-cooperativity microwave-spin coupling in quantum computing or compact
electron paramagnetic resonance sensors to fundamental science such as dark
matter searches.
Related papers
- Diamagnetic micro-chip traps for levitated nanoparticle entanglement experiments [0.0]
Quantum Gravity Mediated Entanglement (QGEM) protocol offers a novel method to probe the quantumness of gravitational interactions at non-relativistic scales.
We propose using magnetic traps based on micro-fabricated wires to trap nanoparticles for interferometric entanglement experiments.
arXiv Detail & Related papers (2024-11-04T17:48:32Z) - Cavity Moiré Materials: Controlling Magnetic Frustration with Quantum Light-Matter Interaction [0.0]
We develop a theory of moir'e materials confined in a cavity consisting of thin polar van der Waals crystals.
Nontrivial quantum geometry of moir'e flat bands leads to electromagnetic vacuum dressing of electrons.
Results indicate that the cavity confinement enables one to control magnetic frustration of moir'e materials.
arXiv Detail & Related papers (2023-02-22T19:00:01Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Cavity quantum electrodynamic readout of a solid-state spin sensor [0.0]
Solid-state spin sensors still lack a universal, high-fidelity readout technique.
We demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy (NV) centers via strong coupling to a dielectric microwave cavity.
Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.
arXiv Detail & Related papers (2020-03-02T18:57:40Z) - Ultralow mechanical damping with Meissner-levitated ferromagnetic
microparticles [0.0]
We show experimentally that micromagnets levitated above type-I superconductors feature very low damping at low frequency and low temperature.
Our results open the way towards the development of ultrasensitive magnetomechanical sensors with potential applications to magnetometry and gravimetry.
arXiv Detail & Related papers (2019-12-27T17:30:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.