論文の概要: The missing link: Developing a safety case for perception components in
automated driving
- arxiv url: http://arxiv.org/abs/2108.13294v1
- Date: Mon, 30 Aug 2021 15:12:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-31 14:50:36.946806
- Title: The missing link: Developing a safety case for perception components in
automated driving
- Title(参考訳): the missing link: a safety case for perception components in automated driving
- Authors: Rick Salay, Krzysztof Czarnecki, Hiroshi Kuwajima, Hirotoshi Yasuoka,
Toshihiro Nakae, Vahdat Abdelzad, Chengjie Huang, Maximilian Kahn, Van Duong
Nguyen
- Abstract要約: 知覚は自動運転システム(AD)の重要な側面であり、機械学習(ML)に大きく依存している。
MLベースのコンポーネントの安全性を保証するという既知の課題にもかかわらず、最近、これらのコンポーネントに対処するユニットレベルの安全ケースの提案が登場した。
本稿では、知覚成分に特化して調整されたリンク引数に対する汎用テンプレートを提案する。
- 参考スコア(独自算出の注目度): 10.43163823170716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety assurance is a central concern for the development and societal
acceptance of automated driving (AD) systems. Perception is a key aspect of AD
that relies heavily on Machine Learning (ML). Despite the known challenges with
the safety assurance of ML-based components, proposals have recently emerged
for unit-level safety cases addressing these components. Unfortunately, AD
safety cases express safety requirements at the system-level and these efforts
are missing the critical linking argument connecting safety requirements at the
system-level to component performance requirements at the unit-level. In this
paper, we propose a generic template for such a linking argument specifically
tailored for perception components. The template takes a deductive and formal
approach to define strong traceability between levels. We demonstrate the
applicability of the template with a detailed case study and discuss its use as
a tool to support incremental development of perception components.
- Abstract(参考訳): 安全保証は、自動運転(AD)システムの開発と社会的受容の中心的な関心事である。
知覚は、機械学習(ML)に大きく依存するADの重要な側面である。
mlベースのコンポーネントの安全性保証に関する既知の課題にもかかわらず、最近、これらのコンポーネントに対処するユニットレベルの安全ケースに関する提案がなされている。
残念なことに、adsafety caseはシステムレベルでの安全要件を表しており、これらの取り組みは、システムレベルでの安全要件とユニットレベルでのコンポーネントパフォーマンス要求をつなぐ重要なリンク議論を欠いている。
本稿では,知覚成分に特化したリンク引数のための汎用テンプレートを提案する。
テンプレートは、レベル間の強いトレーサビリティを定義するために、推論的かつ形式的なアプローチを取る。
テンプレートの適用性を詳細なケーススタディで実証し,知覚成分の漸進的発達を支援するツールとしての利用について考察する。
関連論文リスト
- Safety case template for frontier AI: A cyber inability argument [2.2628353000034065]
攻撃的サイバー能力のための安全ケーステンプレートを提案する。
リスクモデルを特定し、リスクモデルからプロキシタスクを導出し、プロキシタスクの評価設定を定義し、評価結果を結びつける。
論文 参考訳(メタデータ) (2024-11-12T18:45:08Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Cross-Modality Safety Alignment [73.8765529028288]
我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
以上の結果から, クローズドおよびオープンソース両方のLVLMの安全性上の重大な脆弱性が明らかとなり, 複雑で現実的なシナリオを確実に解釈し, 応答する上で, 現行モデルが不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T16:14:15Z) - Towards Comprehensive and Efficient Post Safety Alignment of Large Language Models via Safety Patching [77.36097118561057]
textscSafePatchingは包括的で効率的なPSAのための新しいフレームワークである。
textscSafePatchingはベースラインメソッドよりも包括的で効率的なPSAを実現する。
論文 参考訳(メタデータ) (2024-05-22T16:51:07Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Simulation-based Safety Assurance for an AVP System incorporating
Learning-Enabled Components [0.6526824510982802]
テスト、検証、検証 AD/ADASセーフティクリティカルなアプリケーションが大きな課題のひとつとして残っています。
安全クリティカルな学習可能システムの検証と検証を目的としたシミュレーションベースの開発プラットフォームについて説明する。
論文 参考訳(メタデータ) (2023-09-28T09:00:31Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Online Safety Property Collection and Refinement for Safe Deep
Reinforcement Learning in Mapless Navigation [79.89605349842569]
オンラインプロパティのコレクション・リファインメント(CROP)フレームワークをトレーニング時にプロパティを設計するために導入する。
CROPは、安全でない相互作用を識別し、安全特性を形成するためにコストシグナルを使用する。
本手法をいくつかのロボットマップレスナビゲーションタスクで評価し,CROPで計算した違反量によって,従来のSafe DRL手法よりも高いリターンと低いリターンが得られることを示す。
論文 参考訳(メタデータ) (2023-02-13T21:19:36Z) - Reliability Assessment and Safety Arguments for Machine Learning
Components in Assuring Learning-Enabled Autonomous Systems [19.65793237440738]
LES(Learning-Enabled Systems)のための総合保証フレームワークを提案する。
次に、ML分類器のための新しいモデルに依存しない信頼性評価モデル(RAM)を提案する。
モデル仮定と、我々のRAMが発見したML信頼性を評価するための固有の課題について論じる。
論文 参考訳(メタデータ) (2021-11-30T14:39:22Z) - Safety Case Templates for Autonomous Systems [0.0]
本報告では、機械学習(ML)コンポーネントを含む自律システムのデプロイと運用を支援する安全保証引数テンプレートについて述べる。
レポートはまた、必要に応じてテンプレートを強化し、レビューし、適応するために使用できる、議論の敗者に対する一般的なテンプレートと証拠の信頼を示す。
論文 参考訳(メタデータ) (2021-01-29T15:49:37Z) - Quantifying Assurance in Learning-enabled Systems [3.0938904602244355]
機械学習コンポーネントを組み込んだシステムの依存性保証は、安全クリティカルなアプリケーションで使用する上で重要なステップである。
本稿では, LESが信頼できるという保証の定量的概念を, 保証ケースのコアコンポーネントとして開発する。
本稿では,現実の自律型航空システムへの適用による保証対策の有用性について述べる。
論文 参考訳(メタデータ) (2020-06-18T08:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。