論文の概要: Transfer Learning Based Co-surrogate Assisted Evolutionary Bi-objective
Optimization for Objectives with Non-uniform Evaluation Times
- arxiv url: http://arxiv.org/abs/2108.13339v1
- Date: Mon, 30 Aug 2021 16:10:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 19:01:25.051504
- Title: Transfer Learning Based Co-surrogate Assisted Evolutionary Bi-objective
Optimization for Objectives with Non-uniform Evaluation Times
- Title(参考訳): 伝達学習に基づく非一様評価時間を有する目標に対する進化的二目的最適化
- Authors: Xilu Wang, Yaochu Jin, Sebastian Schmitt, Markus Olhofer
- Abstract要約: 多目的進化アルゴリズムは、それぞれの目的関数を同じ時間内に評価できると仮定する。
高速な対象関数と低速な対象関数の間の機能的関係をモデル化するために、共代理が採用される。
高速な目的の探索プロセスから有用な知識を得るために、転送可能なインスタンス選択法を導入する。
- 参考スコア(独自算出の注目度): 9.139734850798124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing multiobjetive evolutionary algorithms (MOEAs) implicitly assume
that each objective function can be evaluated within the same period of time.
Typically. this is untenable in many real-world optimization scenarios where
evaluation of different objectives involves different computer simulations or
physical experiments with distinct time complexity. To address this issue, a
transfer learning scheme based on surrogate-assisted evolutionary algorithms
(SAEAs) is proposed, in which a co-surrogate is adopted to model the functional
relationship between the fast and slow objective functions and a transferable
instance selection method is introduced to acquire useful knowledge from the
search process of the fast objective. Our experimental results on DTLZ and UF
test suites demonstrate that the proposed algorithm is competitive for solving
bi-objective optimization where objectives have non-uniform evaluation times.
- Abstract(参考訳): ほとんどの既存の多目的進化アルゴリズム(MOEA)は、それぞれの目的関数を同じ時間内に評価できると暗黙的に仮定している。
典型的には
これは、異なる目的の評価が異なるコンピュータシミュレーションや異なる時間複雑性を持つ物理実験を伴う多くの現実世界の最適化シナリオでは維持できない。
そこで本研究では,高速な対象関数と遅い対象関数の機能的関係をモデル化するために,サロゲート支援進化アルゴリズム(saeas)に基づくトランスファー学習方式を提案し,高速目的の探索プロセスから有用な知識を得るためのトランスファー可能なインスタンス選択法を提案する。
DTLZとUFテストスイートの実験結果から,目的物が一様でない評価時間を持つ場合の目的物最適化において,提案アルゴリズムが競合することを示した。
関連論文リスト
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
我々は,制約付き多目的最適化問題に対する進化探索を強化するために,大規模言語モデル(LLM)を用いる。
私たちの目標は、進化の集団の収束を早めることです。
論文 参考訳(メタデータ) (2024-05-09T13:44:04Z) - Computationally Efficient Optimisation of Elbow-Type Draft Tube Using
Neural Network Surrogates [0.0]
本研究の目的は,肘型ドラフトチューブの設計において,単目的および多目的の最適化アルゴリズムを総合的に評価することである。
提案したワークフローは、数値シミュレーションから得られたデータに基づいて訓練されたディープニューラルネットワークサロゲートを利用する。
論文 参考訳(メタデータ) (2024-01-14T14:05:26Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization [29.580786235313987]
InvTrEMO(InvTrEMO)の第1回リバーストランスファー・マルチオブジェクト(InvTrEMO)を紹介する。
InvTrEMOは、決定空間がタスク間で正確に整合していない場合でも、多くの一般的な領域で共通の目的関数を利用する。
InvTrEMOは、高い精度の逆モデルを重要な副産物とし、オンデマンドで調整されたソリューションの生成を可能にする。
論文 参考訳(メタデータ) (2023-12-22T14:12:18Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
バッチ化されたデータ駆動型進化的多目的最適化を実現するためのフレームワークを提案する。
オフザシェルフ進化的多目的最適化アルゴリズムがプラグイン方式で適用できるのは、非常に一般的である。
提案するフレームワークは, より高速な収束と各種PF形状に対する強いレジリエンスを特徴とする。
論文 参考訳(メタデータ) (2021-09-12T23:54:26Z) - A Federated Data-Driven Evolutionary Algorithm for Expensive
Multi/Many-objective Optimization [11.92436948211501]
本稿では,フェデレートされたデータ駆動型進化的多目的/多目的最適化アルゴリズムを提案する。
複数のクライアントが協調してラジアル・ベーシ関数ネットワークをグローバルなサロゲートとしてトレーニングできるように、サロゲート構築のためのフェデレートラーニングを活用している。
グローバルサロゲートを用いて目的値を近似し、近似された目標値の不確かさレベルを推定するために、中央サーバに新たなフェデレーション獲得関数を提案する。
論文 参考訳(メタデータ) (2021-06-22T22:33:24Z) - Tackling the Objective Inconsistency Problem in Heterogeneous Federated
Optimization [93.78811018928583]
本稿では、フェデレートされた異種最適化アルゴリズムの収束性を分析するためのフレームワークを提供する。
我々は,高速な誤差収束を保ちながら,客観的な矛盾を解消する正規化平均化手法であるFedNovaを提案する。
論文 参考訳(メタデータ) (2020-07-15T05:01:23Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。