論文の概要: On the Multilingual Capabilities of Very Large-Scale English Language
Models
- arxiv url: http://arxiv.org/abs/2108.13349v1
- Date: Mon, 30 Aug 2021 16:18:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-31 15:01:10.326046
- Title: On the Multilingual Capabilities of Very Large-Scale English Language
Models
- Title(参考訳): 大規模英語モデルの多言語性について
- Authors: Jordi Armengol-Estap\'e, Ona de Gibert Bonet and Maite Melero
- Abstract要約: GPT(Generative Pre-trained Transformer)は、機械学習の歴史において、前例のない規模に拡張されている。
本研究では,GPT-3の多言語的スキルについて検討し,事前学習用コーパスであるカタルーニャ語にはほとんど現れない1つの言語に着目した。
このモデルでは、特に生成タスクにおいて、主に言語理解タスクでは予測可能な制限があるが、ゼロショットシナリオでは顕著な結果が得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Pre-trained Transformers (GPTs) have recently been scaled to
unprecedented sizes in the history of machine learning. These models, solely
trained on the language modeling objective, have been shown to exhibit
outstanding few-shot learning capabilities in a number of different tasks.
Nevertheless, aside from anecdotal experiences, little is known regarding their
multilingual capabilities, given the fact that the pre-training corpus is
almost entirely composed of English text. In this work, we investigate the
multilingual skills of GPT-3, focusing on one language that barely appears in
the pre-training corpus, Catalan, which makes the results especially
meaningful; we assume that our results may be relevant for other languages as
well. We find that the model shows an outstanding performance, particularly in
generative tasks, with predictable limitations mostly in language understanding
tasks but still with remarkable results given the zero-shot scenario. We
investigate its potential and limits in extractive question-answering and
natural language generation, as well as the effect of scale in terms of model
size.
- Abstract(参考訳): GPT(Generative Pre-trained Transformer)は、機械学習の歴史において前例のない規模に拡張されている。
これらのモデルは、言語モデリングの目的にのみ訓練されており、様々なタスクにおいて優れた数発の学習能力を示すことが示されている。
それにもかかわらず、前訓練されたコーパスがほとんど完全に英語のテキストで構成されているという事実を考えると、その多言語能力についてはほとんど知られていない。
本研究では,GPT-3の多言語的スキルについて検討し,学習前コーパスであるカタルーニャ語にはほとんど現れない1つの言語に着目した。
このモデルでは、特に生成タスクにおいて、主に言語理解タスクでは予測可能な制限があるが、ゼロショットシナリオでは顕著な結果が得られる。
本稿では,抽出質問文と自然言語生成におけるその可能性と限界,およびモデルサイズにおけるスケールの効果について検討する。
関連論文リスト
- Investigating Language-Specific Calibration For Pruning Multilingual Large Language Models [11.421452042888523]
多様な言語,タスク,モデル,および SotA プルーニング技術を用いて,多言語モデルをプルーニングするためのキャリブレーション言語を比較した。
例えば、ターゲット言語を校正することで、効率的に言語モデリング能力を維持することができるが、必ずしも下流タスクに利益をもたらすとは限らない。
論文 参考訳(メタデータ) (2024-08-26T16:29:13Z) - Evaluating Large Language Models on Controlled Generation Tasks [92.64781370921486]
本稿では,異なる粒度を持つ文計画ベンチマークを含む,様々なベンチマークを広範囲に分析する。
大規模言語モデルと最先端の微調整された小型モデルを比較した後、大規模言語モデルが後方に落ちたり、比較されたり、より小型モデルの能力を超えたりしたスペクトルを示す。
論文 参考訳(メタデータ) (2023-10-23T03:48:24Z) - Sabi\'a: Portuguese Large Language Models [14.801853435122908]
対象言語における単言語事前学習は,すでに多種多様なコーパスで訓練されているモデルを大幅に改善することを示した。
ポルトガルの14のデータセットからなるスイートであるPoetaに関するわずかな評価によると、我々のモデルは、英語と多言語で比較すると、かなり差がある。
論文 参考訳(メタデータ) (2023-04-16T20:11:19Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - Multi Task Learning For Zero Shot Performance Prediction of Multilingual
Models [12.759281077118567]
多言語トランスフォーマーに基づく言語モデルは、言語間のゼロショット転送において驚くほど効果的であることが観察されている。
我々は,タスク上のゼロショット性能をマルチタスク学習問題としてモデル化することにより,タスク上のゼロショット性能を予測するための既存の手法を構築した。
論文 参考訳(メタデータ) (2022-05-12T14:47:03Z) - Few-shot Learning with Multilingual Language Models [66.49496434282564]
多様な言語群をカバーするバランスの取れたコーパス上で,多言語の自動回帰言語モデルを訓練する。
私たちの最大のモデルは、20以上の代表言語で数ショットの学習において、新しい最先端の技術を定めています。
本稿では,モデルがどこで成功し,失敗するかを詳細に分析し,特に言語間の文脈内学習を可能にすることを示す。
論文 参考訳(メタデータ) (2021-12-20T16:52:35Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
我々は、非英語言語における多言語分類を行う際に、GPTモデルとT5モデルの多言語的スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できることが示されている。
論文 参考訳(メタデータ) (2021-09-16T03:08:22Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - Probing Multilingual Language Models for Discourse [0.0]
XLM-RoBERTaファミリーのモデルが常に最高のパフォーマンスを示していることが分かりました。
また, モデル蒸留は, 文表現の言語間移動能力に悪影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-09T06:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。