Benchmarking variational quantum eigensolvers for the
square-octagon-lattice Kitaev model
- URL: http://arxiv.org/abs/2108.13375v3
- Date: Tue, 1 Aug 2023 16:27:35 GMT
- Title: Benchmarking variational quantum eigensolvers for the
square-octagon-lattice Kitaev model
- Authors: Andy C. Y. Li, M. Sohaib Alam, Thomas Iadecola, Ammar Jahin, Joshua
Job, Doga Murat Kurkcuoglu, Richard Li, Peter P. Orth, A. Bar{\i}\c{s}
\"Ozg\"uler, Gabriel N. Perdue, Norm M. Tubman
- Abstract summary: Quantum spin systems may offer the first opportunities for beyond-classical quantum computations of scientific interest.
The variational quantum eigensolver (VQE) is a promising approach to finding energy eigenvalues on noisy quantum computers.
We demonstrate the implementation of HVA circuits on Rigetti's Aspen-9 chip with error mitigation.
- Score: 3.6810704401578724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum spin systems may offer the first opportunities for beyond-classical
quantum computations of scientific interest. While general quantum simulation
algorithms likely require error-corrected qubits, there may be applications of
scientific interest prior to the practical implementation of quantum error
correction. The variational quantum eigensolver (VQE) is a promising approach
to finding energy eigenvalues on noisy quantum computers. Lattice models are of
broad interest for use on near-term quantum hardware due to the sparsity of the
number of Hamiltonian terms and the possibility of matching the lattice
geometry to the hardware geometry. Here, we consider the Kitaev spin model on a
hardware-native square-octagon qubit connectivity map, and examine the
possibility of efficiently probing its rich phase diagram with VQE approaches.
By benchmarking different choices of variational Ansatz states and classical
optimizers, we illustrate the advantage of a mixed optimization approach using
the Hamiltonian variational Ansatz (HVA) and the potential of probing the
system's phase diagram using VQE. We further demonstrate the implementation of
HVA circuits on Rigetti's Aspen-9 chip with error mitigation.
Related papers
- Efficient charge-preserving excited state preparation with variational quantum algorithms [33.03471460050495]
We introduce a charge-preserving VQD (CPVQD) algorithm, designed to incorporate symmetry and the corresponding conserved charge into the VQD framework.
Results show applications in high-energy physics, nuclear physics, and quantum chemistry.
arXiv Detail & Related papers (2024-10-18T10:30:14Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Variational Quantum Algorithms for Simulation of Lindblad Dynamics [0.0]
We introduce a variational hybrid classical-quantum algorithm to simulate the Lindblad master equation and its adjoint for time-evolving Markovian open quantum systems and quantum observables.
We design and optimize low-depth variational quantum circuits that efficiently capture the unitary and non-unitary dynamics of the solutions.
arXiv Detail & Related papers (2023-05-04T13:25:44Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
We propose several approaches for solving differential equations (DEs) with quantum kernel methods.
We compose quantum models as weighted sums of kernel functions, where variables are encoded using feature maps and model derivatives are represented.
arXiv Detail & Related papers (2022-03-16T18:56:35Z) - Identification of topological phases using classically-optimized
variational quantum eigensolver [0.6181093777643575]
Variational quantum eigensolver (VQE) is regarded as a promising candidate of hybrid quantum-classical algorithm for quantum computers.
We propose classically-optimized VQE (co-VQE), where the whole process of the optimization is efficiently conducted on a classical computer.
In co-VQE, we only use quantum computers to measure nonlocal quantities after the parameters are optimized.
arXiv Detail & Related papers (2022-02-07T02:26:58Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
The variational quantum eigensolver (VQE) is a method that uses a hybrid quantum-classical computational approach to find eigenvalues and eigenvalues of a Hamiltonian.
VQE has been successfully applied to solve the electronic Schr"odinger equation for a variety of small molecules.
Modern quantum computers are not capable of executing deep quantum circuits produced by using currently available ansatze.
arXiv Detail & Related papers (2021-03-15T16:25:36Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.