論文の概要: Recent advances for quantum classifiers
- arxiv url: http://arxiv.org/abs/2108.13421v1
- Date: Mon, 30 Aug 2021 18:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 14:22:37.368102
- Title: Recent advances for quantum classifiers
- Title(参考訳): 量子分類器の最近の進歩
- Authors: Weikang Li and Dong-Ling Deng
- Abstract要約: 本稿では,量子支援ベクトルマシン,量子カーネル法,量子決定木,量子近接アルゴリズムなど,多数の量子分類アルゴリズムについて概説する。
次に、基本的に分類のための変分量子回路である変分量子分類器を紹介する。
- 参考スコア(独自算出の注目度): 2.459525036555352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has achieved dramatic success in a broad spectrum of
applications. Its interplay with quantum physics may lead to unprecedented
perspectives for both fundamental research and commercial applications, giving
rise to an emergent research frontier of quantum machine learning. Along this
line, quantum classifiers, which are quantum devices that aim to solve
classification problems in machine learning, have attracted tremendous
attention recently. In this review, we give a relatively comprehensive overview
for the studies of quantum classifiers, with a focus on recent advances. First,
we will review a number of quantum classification algorithms, including quantum
support vector machine, quantum kernel methods, quantum decision tree, and
quantum nearest neighbor algorithm. Then, we move on to introduce the
variational quantum classifiers, which are essentially variational quantum
circuits for classifications. We will review different architectures for
constructing variational quantum classifiers and introduce the barren plateau
problem, where the training of quantum classifiers might be hindered by the
exponentially vanishing gradient. In addition, the vulnerability aspect of
quantum classifiers in the setting of adversarial learning and the recent
experimental progress on different quantum classifiers will also be discussed.
- Abstract(参考訳): 機械学習は幅広い応用で劇的な成功を収めてきた。
量子物理学との相互作用は、基礎研究と商業応用の両方に前例のない視点をもたらし、量子機械学習の新たな研究フロンティアを生み出している。
この線に沿って、機械学習の分類問題の解決を目的とした量子デバイスである量子分類器が近年注目されている。
本稿では,量子分類器の研究の概観を概観し,最近の進歩に注目した。
まず、量子サポートベクターマシン、量子カーネルメソッド、量子決定木、量子最近傍アルゴリズムなど、いくつかの量子分類アルゴリズムをレビューする。
次に、基本的には分類のための変分量子回路である変分量子分類器を導入する。
我々は,変分量子分類器を構成するための異なるアーキテクチャを考察し,量子分類器のトレーニングが指数関数的に消失する勾配によって妨げられる不毛高原問題を導入する。
さらに、逆学習の設定における量子分類器の脆弱性や、異なる量子分類器に関する最近の実験的進展についても論じる。
関連論文リスト
- Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
量子プロセッサは、考慮された基本的な分類タスクを正しく解くことができることを示す。
量子プロセッサの能力が向上するにつれ、機械学習の有用なツールになり得る。
論文 参考訳(メタデータ) (2024-06-17T18:20:51Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MOREは、測定と相関に基づく変分量子多重分類器の略である。
我々はQiskit Pythonライブラリを使ってMOREを実装し、ノイズフリーとノイズの多い量子システムの両方で広範囲にわたる実験により評価する。
論文 参考訳(メタデータ) (2023-07-21T19:33:10Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Near-Term Quantum Computing Techniques: Variational Quantum Algorithms,
Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation [5.381727213688375]
私たちはまだ、本格的な量子コンピュータの成熟まで長い道のりを歩んでいます。
注目すべき課題は、非自明なタスクを確実に実行可能なアプリケーションを開発することです。
誤りを特徴づけ、緩和するために、いくつかの短期量子コンピューティング技術が提案されている。
論文 参考訳(メタデータ) (2022-11-16T07:53:15Z) - A Survey on Quantum Reinforcement Learning [2.5882725323376112]
量子強化学習は、量子コンピューティングと機械学習の交差する分野である。
既に利用可能なノイズの多い中間スケール量子デバイスに焦点を合わせ、それらは関数近似器として機能する変分量子回路を含む。
さらに、将来のフォールトトレラントハードウェアに基づく量子強化学習アルゴリズムを調査し、その一部は証明可能な量子優位性を持つ。
論文 参考訳(メタデータ) (2022-11-07T11:25:47Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Fisher Information in Noisy Intermediate-Scale Quantum Applications [0.0]
古典的および量子フィッシャー情報は量子センシングの分野に根ざしている。
ノイズの多い中間スケール量子デバイスの研究におけるそれらの有用性は、最近しか発見されていない。
本稿は、量子センシングを超えた短期的応用のための有用なツールとして、古典的および量子フィッシャー情報をさらに普及させることを目的としている。
論文 参考訳(メタデータ) (2021-03-28T18:11:15Z) - VSQL: Variational Shadow Quantum Learning for Classification [6.90132007891849]
我々は,変分影量子学習と呼ぶ教師付き量子学習のための新しいハイブリッド量子古典フレームワークを提案する。
まず,変分影量子回路を用いて古典的特徴を畳み込みで抽出し,完全連結ニューラルネットワークを用いて分類タスクを完了させる。
本手法は,パラメータ数を著しく削減し,量子回路トレーニングをより容易に行うことができることを示す。
論文 参考訳(メタデータ) (2020-12-15T13:51:01Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。