論文の概要: The curse of random quantum data
- arxiv url: http://arxiv.org/abs/2408.09937v1
- Date: Mon, 19 Aug 2024 12:18:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 16:24:38.640513
- Title: The curse of random quantum data
- Title(参考訳): ランダム量子データの呪い
- Authors: Kaining Zhang, Junyu Liu, Liu Liu, Liang Jiang, Min-Hsiu Hsieh, Dacheng Tao,
- Abstract要約: 量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
- 参考スコア(独自算出の注目度): 62.24825255497622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning, which involves running machine learning algorithms on quantum devices, may be one of the most significant flagship applications for these devices. Unlike its classical counterparts, the role of data in quantum machine learning has not been fully understood. In this work, we quantify the performances of quantum machine learning in the landscape of quantum data. Provided that the encoding of quantum data is sufficiently random, the performance, we find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in the number of qubits, which we call "the curse of random quantum data". Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks. Conversely, we highlight that through meticulous design of quantum datasets, it is possible to avoid these curses, thereby achieving efficient convergence and robust generalization. Our conclusions are corroborated by extensive numerical simulations.
- Abstract(参考訳): 量子デバイス上で機械学習アルゴリズムを実行する量子機械学習は、これらのデバイスにとって最も重要なフラッグシップアプリケーションのひとつかもしれない。
従来のものとは異なり、量子機械学習におけるデータの役割は完全には理解されていない。
本研究では,量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子データの符号化が十分にランダムであることを示すと、量子機械学習におけるトレーニング効率と一般化能力は「ランダムな量子データの呪い」と呼ばれる量子ビット数の増加とともに指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
逆に、量子データセットの厳密な設計により、これらの呪いを回避し、効率的な収束と堅牢な一般化を実現することができる。
我々の結論は広範な数値シミュレーションによって裏付けられている。
関連論文リスト
- Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
一般化誤差が小さい場合でも,量子カーネル法は予測能力に乏しい。
我々は、量子計算にノイズの多い量子カーネル法を用いるために重要な警告を提供する。
論文 参考訳(メタデータ) (2024-01-31T01:02:16Z) - Variational data encoding and correlations in quantum-enhanced machine
learning [2.436161840735876]
我々は,古典的データを量子状態に変換するための効果的な符号化プロトコルを開発した。
また、量子加速を妨げる必然的なノイズに対処する必要性にも対処する。
機械学習から学習の概念を適用することで、学習可能なプロセスを符号化するデータを描画する。
論文 参考訳(メタデータ) (2023-12-13T07:55:57Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z) - Data compression for quantum machine learning [2.119778346188635]
量子コンピュータで使用する古典的データを効率よく圧縮・ロードする問題に対処する。
提案手法により,必要量子ビット数と量子回路の深さを調整できる。
論文 参考訳(メタデータ) (2022-04-24T03:03:14Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - A rigorous and robust quantum speed-up in supervised machine learning [6.402634424631123]
本稿では,汎用量子学習アルゴリズムを用いて,教師付き分類のための厳密な量子スピードアップを確立する。
我々の量子分類器は、フォールトトレラント量子コンピュータを用いてカーネル関数を推定する従来のサポートベクトルマシンである。
論文 参考訳(メタデータ) (2020-10-05T17:22:22Z) - Maximal entropy approach for quantum state tomography [3.6344381605841187]
現在の量子コンピューティングデバイスは、ノイズの多い中間スケール量子$(NISQ$)$デバイスである。
量子トモグラフィーは、観測可能な完全な集合によって量子系の密度行列を再構築しようとする。
本稿では、未知の可観測物の値を予測するために、最大情報エントロピーに基づく量子トモグラフィーの代替手法を提案する。
論文 参考訳(メタデータ) (2020-09-02T04:39:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。