Scene Synthesis via Uncertainty-Driven Attribute Synchronization
- URL: http://arxiv.org/abs/2108.13499v2
- Date: Wed, 1 Sep 2021 07:10:35 GMT
- Title: Scene Synthesis via Uncertainty-Driven Attribute Synchronization
- Authors: Haitao Yang, Zaiwei Zhang, Siming Yan, Haibin Huang, Chongyang Ma, Yi
Zheng, Chandrajit Bajaj, Qixing Huang
- Abstract summary: This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
- Score: 52.31834816911887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing deep neural networks to generate 3D scenes is a fundamental
problem in neural synthesis with immediate applications in architectural CAD,
computer graphics, as well as in generating virtual robot training
environments. This task is challenging because 3D scenes exhibit diverse
patterns, ranging from continuous ones, such as object sizes and the relative
poses between pairs of shapes, to discrete patterns, such as occurrence and
co-occurrence of objects with symmetrical relationships. This paper introduces
a novel neural scene synthesis approach that can capture diverse feature
patterns of 3D scenes. Our method combines the strength of both neural
network-based and conventional scene synthesis approaches. We use the
parametric prior distributions learned from training data, which provide
uncertainties of object attributes and relative attributes, to regularize the
outputs of feed-forward neural models. Moreover, instead of merely predicting a
scene layout, our approach predicts an over-complete set of attributes. This
methodology allows us to utilize the underlying consistency constraints among
the predicted attributes to prune infeasible predictions. Experimental results
show that our approach outperforms existing methods considerably. The generated
3D scenes interpolate the training data faithfully while preserving both
continuous and discrete feature patterns.
Related papers
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Purposer: Putting Human Motion Generation in Context [30.706219830149504]
We present a novel method to generate human motion to populate 3D indoor scenes.
It can be controlled with various combinations of conditioning signals such as a path in a scene, target poses, past motions, and scenes represented as 3D point clouds.
arXiv Detail & Related papers (2024-04-19T15:16:04Z) - Neural Textured Deformable Meshes for Robust Analysis-by-Synthesis [17.920305227880245]
Our paper formulates triple vision tasks in a consistent manner using approximate analysis-by-synthesis.
We show that our analysis-by-synthesis is much more robust than conventional neural networks when evaluated on real-world images.
arXiv Detail & Related papers (2023-05-31T18:45:02Z) - Robust Category-Level 3D Pose Estimation from Synthetic Data [17.247607850702558]
We introduce SyntheticP3D, a new synthetic dataset for object pose estimation generated from CAD models.
We propose a novel approach (CC3D) for training neural mesh models that perform pose estimation via inverse rendering.
arXiv Detail & Related papers (2023-05-25T14:56:03Z) - NeuralReshaper: Single-image Human-body Retouching with Deep Neural
Networks [50.40798258968408]
We present NeuralReshaper, a novel method for semantic reshaping of human bodies in single images using deep generative networks.
Our approach follows a fit-then-reshape pipeline, which first fits a parametric 3D human model to a source human image.
To deal with the lack-of-data problem that no paired data exist, we introduce a novel self-supervised strategy to train our network.
arXiv Detail & Related papers (2022-03-20T09:02:13Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Learning Transferable Kinematic Dictionary for 3D Human Pose and Shape
Reconstruction [15.586347115568973]
We propose a kinematic dictionary, which explicitly regularizes the solution space of relative 3D rotations of human joints.
Our method achieves end-to-end 3D reconstruction without the need of using any shape annotations during the training of neural networks.
The proposed method achieves competitive results on large-scale datasets including Human3.6M, MPI-INF-3DHP, and LSP.
arXiv Detail & Related papers (2021-04-02T09:24:29Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
We present deep neural network methodology to reconstruct the 3d pose and shape of people, given an input RGB image.
We rely on a recently introduced, expressivefull body statistical 3d human model, GHUM, trained end-to-end.
Central to our methodology, is a learning to learn and optimize approach, referred to as HUmanNeural Descent (HUND), which avoids both second-order differentiation.
arXiv Detail & Related papers (2020-08-16T13:38:41Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.