論文の概要: Deep Learning on Edge TPUs
- arxiv url: http://arxiv.org/abs/2108.13732v1
- Date: Tue, 31 Aug 2021 10:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 22:36:47.914213
- Title: Deep Learning on Edge TPUs
- Title(参考訳): エッジTPUの深層学習
- Authors: Andreas M Kist
- Abstract要約: Edge TPUプラットフォーム、Edge TPUを使用して達成されたタスク、Edge TPUハードウェアにモデルをデプロイするために必要なステップについてレビューします。
Edge TPUは、一般的なコンピュータビジョンタスクに対処するだけでなく、他のハードウェアアクセラレータを上回ります。
Edge TPUをカメラに組み込むことで、一次データのシームレスな分析が可能になる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computing at the edge is important in remote settings, however, conventional
hardware is not optimized for utilizing deep neural networks. The Google Edge
TPU is an emerging hardware accelerator that is cost, power and speed
efficient, and is available for prototyping and production purposes. Here, I
review the Edge TPU platform, the tasks that have been accomplished using the
Edge TPU, and which steps are necessary to deploy a model to the Edge TPU
hardware. The Edge TPU is not only capable of tackling common computer vision
tasks, but also surpasses other hardware accelerators, especially when the
entire model can be deployed to the Edge TPU. Co-embedding the Edge TPU in
cameras allows a seamless analysis of primary data. In summary, the Edge TPU is
a maturing system that has proven its usability across multiple tasks.
- Abstract(参考訳): エッジでのコンピューティングはリモート設定において重要であるが、従来のハードウェアはディープニューラルネットワークの利用に最適化されていない。
google edge tpuは、コスト、電力、速度効率が良く、プロトタイピングや生産目的にも利用できる、新たなハードウェアアクセラレータだ。
ここでは、Edge TPUプラットフォーム、Edge TPUを使用して達成されたタスク、Edge TPUハードウェアにモデルをデプロイするために必要なステップについてレビューする。
Edge TPUは一般的なコンピュータビジョンタスクに対処するだけでなく、特にEdge TPUにモデル全体をデプロイできる場合、他のハードウェアアクセラレータを上回ります。
Edge TPUをカメラに組み込むことで、一次データのシームレスな分析が可能になる。
要約すると、Edge TPUは成熟したシステムであり、そのユーザビリティを複数のタスクで証明している。
関連論文リスト
- Exploration of TPUs for AI Applications [0.0]
Processing Units (TPU) は、Googleが開発したディープラーニングのためのハードウェアアクセラレーターである。
本稿では、クラウドおよびエッジコンピューティングにおけるTPUを、AIアプリケーションに焦点をあてて検討することを目的とする。
論文 参考訳(メタデータ) (2023-09-16T07:58:05Z) - FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems [61.335229621081346]
フェデレートラーニング(FL)は,ネットワークエッジ上での分散ディープラーニングのプライバシ強化を実現する上で,有効なテクニックとなっている。
本稿では,既存のFLベンチマークを補完するFLEdgeを提案する。
論文 参考訳(メタデータ) (2023-06-08T13:11:20Z) - Fast GraspNeXt: A Fast Self-Attention Neural Network Architecture for
Multi-task Learning in Computer Vision Tasks for Robotic Grasping on the Edge [80.88063189896718]
アーキテクチャと計算の複雑さが高いと、組み込みデバイスへのデプロイに適さない。
Fast GraspNeXtは、ロボットグルーピングのためのコンピュータビジョンタスクに埋め込まれたマルチタスク学習に適した、高速な自己認識型ニューラルネットワークアーキテクチャである。
論文 参考訳(メタデータ) (2023-04-21T18:07:14Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
ディープニューラルネットワーク(DNN)レイテンシのキャラクタリゼーションは、時間を要するプロセスである。
ハードウェアデバイスの事前知識とDNNアーキテクチャのレイテンシを具体化し,MAPLEを拡張したMAPLE-Xを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:08:20Z) - MAPLE-Edge: A Runtime Latency Predictor for Edge Devices [80.01591186546793]
汎用ハードウェアの最先端遅延予測器であるMAPLEのエッジデバイス指向拡張であるMAPLE-Edgeを提案する。
MAPLEと比較して、MAPLE-Edgeはより小さなCPUパフォーマンスカウンタを使用して、ランタイムとターゲットデバイスプラットフォームを記述することができる。
また、共通ランタイムを共有するデバイスプール上でトレーニングを行うMAPLEとは異なり、MAPLE-Edgeは実行時に効果的に一般化できることを示す。
論文 参考訳(メタデータ) (2022-04-27T14:00:48Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Exploring Deep Neural Networks on Edge TPU [2.9573904824595614]
本稿では、フィードフォワードニューラルネットワークにおけるGoogleのEdge TPUの性能について検討する。
We compare the energy efficiency of Edge TPU with widely-useed embedded CPU ARM Cortex-A53。
論文 参考訳(メタデータ) (2021-10-17T14:01:26Z) - Exploring Edge TPU for Network Intrusion Detection in IoT [2.8873930745906957]
本稿では、ディープラーニングアプローチに基づいて、IoTのエッジに実用的なネットワーク侵入検知システム(NIDS)を実装するためのGoogleのEdge TPUについて検討する。
これら3つのメトリクスを調べるために、2つの主要なディープニューラルネットワークアーキテクチャの様々なスケールドモデルサイズが使用される。
Edge TPUベースの実装の性能は、エネルギー効率の良い組み込みCPU(ARM Cortex A53)と比較される
論文 参考訳(メタデータ) (2021-03-30T12:43:57Z) - An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks [2.7584363116322863]
Edge TPUは低消費電力のエッジデバイス用のアクセラレータで、CoralやPixelなどのさまざまなGoogle製品で広く使用されている。
私たちは、エッジtpusの3つのクラスを広範囲に評価し、さまざまなコンピューティングエコシステムをカバーしました。
我々は、アクセラレーターの主要なパフォーマンス指標を推定するために、高精度な学習機械学習モデルの開発に取り組みます。
論文 参考訳(メタデータ) (2021-02-20T19:25:09Z) - Accelerator-aware Neural Network Design using AutoML [5.33024001730262]
We present a class of computer vision model designed using hardware-aware neural architecture search and customd to run on the Edge TPU。
CoralデバイスにおけるEdge TPUでは、これらのモデルはリアルタイムな画像分類性能を実現しつつ、データセンターで実行される大規模で計算量の多いモデルでのみ見られる精度を実現している。
論文 参考訳(メタデータ) (2020-03-05T21:34:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。