論文の概要: Exploring Edge TPU for Network Intrusion Detection in IoT
- arxiv url: http://arxiv.org/abs/2103.16295v1
- Date: Tue, 30 Mar 2021 12:43:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 20:36:13.714946
- Title: Exploring Edge TPU for Network Intrusion Detection in IoT
- Title(参考訳): IoTにおけるネットワーク侵入検出のためのエッジTPUの探索
- Authors: Seyedehfaezeh Hosseininoorbin, Siamak Layeghy, Mohanad Sarhan, Raja
Jurdak, Marius Portmann
- Abstract要約: 本稿では、ディープラーニングアプローチに基づいて、IoTのエッジに実用的なネットワーク侵入検知システム(NIDS)を実装するためのGoogleのEdge TPUについて検討する。
これら3つのメトリクスを調べるために、2つの主要なディープニューラルネットワークアーキテクチャの様々なスケールドモデルサイズが使用される。
Edge TPUベースの実装の性能は、エネルギー効率の良い組み込みCPU(ARM Cortex A53)と比較される
- 参考スコア(独自算出の注目度): 2.8873930745906957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores Google's Edge TPU for implementing a practical network
intrusion detection system (NIDS) at the edge of IoT, based on a deep learning
approach. While there are a significant number of related works that explore
machine learning based NIDS for the IoT edge, they generally do not consider
the issue of the required computational and energy resources. The focus of this
paper is the exploration of deep learning-based NIDS at the edge of IoT, and in
particular the computational and energy efficiency. In particular, the paper
studies Google's Edge TPU as a hardware platform, and considers the following
three key metrics: computation (inference) time, energy efficiency and the
traffic classification performance. Various scaled model sizes of two major
deep neural network architectures are used to investigate these three metrics.
The performance of the Edge TPU-based implementation is compared with that of
an energy efficient embedded CPU (ARM Cortex A53). Our experimental evaluation
shows some unexpected results, such as the fact that the CPU significantly
outperforms the Edge TPU for small model sizes.
- Abstract(参考訳): 本稿では、ディープラーニングアプローチに基づいて、IoTのエッジに実用的なネットワーク侵入検知システム(NIDS)を実装するためのGoogleのEdge TPUについて検討する。
IoTエッジのための機械学習ベースのNIDSを探索する関連研究は相当数あるが、彼らは一般的に、必要な計算とエネルギーリソースの問題を考慮していない。
本稿では,IoTのエッジにおける深層学習に基づくNIDSの探索,特に計算とエネルギー効率について述べる。
特に、GoogleのEdge TPUをハードウェアプラットフォームとして研究し、計算(推論)時間、エネルギー効率、トラフィック分類性能の3つの重要な指標について考察する。
これら3つのメトリクスを調べるために、2つの主要なディープニューラルネットワークアーキテクチャの様々なスケールドモデルサイズが使用される。
Edge TPUベースの実装の性能は、エネルギー効率の良い組み込みCPU(ARM Cortex A53)と比較される。
実験の結果,CPUがEdge TPUを小型モデルで大幅に上回っていることなど,予期せぬ結果が得られた。
関連論文リスト
- Unveiling Energy Efficiency in Deep Learning: Measurement, Prediction, and Scoring across Edge Devices [8.140572894424208]
我々はエネルギー測定、予測、効率評価を含む3倍の研究を行う。
まず、デバイス上での深層学習のエネルギー消費特性を明らかにするための、第1級の詳細な測定結果を示す。
第2に、カーネルレベルのエネルギーデータセットに基づいて、エッジデバイスのための最初のカーネルレベルのエネルギー予測器を設計、実装する。
論文 参考訳(メタデータ) (2023-10-19T23:55:00Z) - Exploration of TPUs for AI Applications [0.0]
Processing Units (TPU) は、Googleが開発したディープラーニングのためのハードウェアアクセラレーターである。
本稿では、クラウドおよびエッジコンピューティングにおけるTPUを、AIアプリケーションに焦点をあてて検討することを目的とする。
論文 参考訳(メタデータ) (2023-09-16T07:58:05Z) - PCBDet: An Efficient Deep Neural Network Object Detection Architecture
for Automatic PCB Component Detection on the Edge [48.7576911714538]
PCBDetは、最先端の推論スループットを提供するアテンションコンデンサネットワーク設計である。
他の最先端のアーキテクチャ設計に比べて優れたPCBコンポーネント検出性能を実現している。
論文 参考訳(メタデータ) (2023-01-23T04:34:25Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Exploring Deep Neural Networks on Edge TPU [2.9573904824595614]
本稿では、フィードフォワードニューラルネットワークにおけるGoogleのEdge TPUの性能について検討する。
We compare the energy efficiency of Edge TPU with widely-useed embedded CPU ARM Cortex-A53。
論文 参考訳(メタデータ) (2021-10-17T14:01:26Z) - Deep Learning on Edge TPUs [0.0]
Edge TPUプラットフォーム、Edge TPUを使用して達成されたタスク、Edge TPUハードウェアにモデルをデプロイするために必要なステップについてレビューします。
Edge TPUは、一般的なコンピュータビジョンタスクに対処するだけでなく、他のハードウェアアクセラレータを上回ります。
Edge TPUをカメラに組み込むことで、一次データのシームレスな分析が可能になる。
論文 参考訳(メタデータ) (2021-08-31T10:23:37Z) - An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks [2.7584363116322863]
Edge TPUは低消費電力のエッジデバイス用のアクセラレータで、CoralやPixelなどのさまざまなGoogle製品で広く使用されている。
私たちは、エッジtpusの3つのクラスを広範囲に評価し、さまざまなコンピューティングエコシステムをカバーしました。
我々は、アクセラレーターの主要なパフォーマンス指標を推定するために、高精度な学習機械学習モデルの開発に取り組みます。
論文 参考訳(メタデータ) (2021-02-20T19:25:09Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study a edge intelligence-based IoT network that a set of edge server learn a shared model using federated learning (FL)。
フェデレーションエッジインテリジェンス(FEI)と呼ばれる新しいフレームワークを提案し、エッジサーバがIoTネットワークのエネルギーコストに応じて必要なデータサンプル数を評価できるようにする。
提案アルゴリズムがIoTネットワークのトポロジ的情報を漏洩したり開示したりしないことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:51:59Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。