論文の概要: Automatic labelling of urban point clouds using data fusion
- arxiv url: http://arxiv.org/abs/2108.13757v1
- Date: Tue, 31 Aug 2021 11:14:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 14:28:35.116207
- Title: Automatic labelling of urban point clouds using data fusion
- Title(参考訳): データ融合による都市点雲の自動ラベリング
- Authors: Daan Bloembergen and Chris Eijgenstein
- Abstract要約: 本稿では,都市部における街路点雲のセマンティックセマンティックセグメンテーションのためのラベル付きデータセットを半自動生成する手法について述べる。
我々は、標高データや大規模地形図などの公開データソースを用いたデータ融合技術を用いて、ポイントクラウドの一部を自動的にラベル付けする。
これにより、ディープセマンティックセグメンテーションモデルをトレーニングするのに十分なラベル付きデータセットを作成するのに必要な時間が大幅に制限される。
- 参考スコア(独自算出の注目度): 1.8275108630751844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we describe an approach to semi-automatically create a labelled
dataset for semantic segmentation of urban street-level point clouds. We use
data fusion techniques using public data sources such as elevation data and
large-scale topographical maps to automatically label parts of the point cloud,
after which only limited human effort is needed to check the results and make
amendments where needed. This drastically limits the time needed to create a
labelled dataset that is extensive enough to train deep semantic segmentation
models. We apply our method to point clouds of the Amsterdam region, and
successfully train a RandLA-Net semantic segmentation model on the labelled
dataset. These results demonstrate the potential of smart data fusion and
semantic segmentation for the future of smart city planning and management.
- Abstract(参考訳): 本稿では,都市部における街路点雲のセマンティックセグメンテーションのためのラベル付きデータセットを半自動生成する手法について述べる。
我々は,標高データや大規模地形図などの公開データソースを用いたデータ融合技術を用いてポイントクラウドの部分を自動的にラベル付けする。
これにより、ディープセマンティックセグメンテーションモデルをトレーニングするのに十分なラベル付きデータセットを作成するのに必要な時間が大幅に制限される。
本手法をアムステルダム地域のクラウドに応用し,ラベル付きデータセット上でRandLA-Netセマンティックセマンティックセグメンテーションモデルをトレーニングした。
これらの結果は、スマートシティ計画と管理の将来に向けたスマートデータ融合とセマンティックセグメンテーションの可能性を示している。
関連論文リスト
- Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets [51.74296438621836]
Scribbles for Allは、スクリブルラベルに基づいて訓練されたセマンティックセグメンテーションのためのラベルおよびトレーニングデータ生成アルゴリズムである。
弱い監督の源泉としてのスクリブルの主な制限は、スクリブルセグメンテーションのための挑戦的なデータセットの欠如である。
Scribbles for Allは、いくつかの人気のあるセグメンテーションデータセットのスクリブルラベルを提供し、密集したアノテーションを持つデータセットのスクリブルラベルを自動的に生成するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-08-22T15:29:08Z) - ECLAIR: A High-Fidelity Aerial LiDAR Dataset for Semantic Segmentation [0.5277756703318045]
ECLAIRは、ポイントクラウドセマンティックセグメンテーションの研究を進めるために特別に設計された、屋外の大規模なLiDARデータセットである。
データセットの総面積は10$km2$で6億点近くあり、11の異なるオブジェクトカテゴリが特徴である。
このデータセットは、3D都市モデリング、シーン理解、ユーティリティインフラストラクチャ管理といった分野を前進させるために設計されている。
論文 参考訳(メタデータ) (2024-04-16T16:16:40Z) - Empower Text-Attributed Graphs Learning with Large Language Models
(LLMs) [5.920353954082262]
本稿では,Large Language Models (LLMs) を用いたノード生成によるテキスト分散グラフの強化のためのプラグイン・アンド・プレイ手法を提案する。
エッジ予測器を用いて、生のデータセットに固有の構造情報をキャプチャし、新たに生成されたサンプルを元のグラフに統合する。
実験では、特に低ショットシナリオにおいて、提案したパラダイムの卓越した性能を示す。
論文 参考訳(メタデータ) (2023-10-15T16:04:28Z) - AutoSynth: Learning to Generate 3D Training Data for Object Point Cloud
Registration [69.21282992341007]
Auto Synthは、ポイントクラウド登録のための3Dトレーニングデータを自動的に生成する。
私たちはポイントクラウド登録ネットワークをもっと小さなサロゲートネットワークに置き換え、4056.43$のスピードアップを実現しました。
TUD-L,LINEMOD,Occluded-LINEMODに関する我々の研究結果は,検索データセットでトレーニングされたニューラルネットワークが,広く使用されているModelNet40データセットでトレーニングされたニューラルネットワークよりも一貫してパフォーマンスが向上していることを示す。
論文 参考訳(メタデータ) (2023-09-20T09:29:44Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3Dセマンティックデータは、障害物検出やエゴ-車両の局所化といった中核的な認識タスクに有用である。
そこで我々は,大規模生産段階の運用領域に対応する多様なラベル空間を持つ新しいデータセットであるNavala 3D(Navya3DSeg)を提案する。
ラベルのない23のラベル付きシーケンスと25の補足シーケンスが含まれており、ポイントクラウド上の自己教師付きおよび半教師付きセマンティックセマンティックセグメンテーションベンチマークを探索するために設計された。
論文 参考訳(メタデータ) (2023-02-16T13:41:19Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
本稿では,機械学習モデルの学習のための衛星画像データセットの自動生成のための設計検討を行う。
本稿では,ニューラルネットワークの深層学習と評価の観点から直面する課題について論じる。
論文 参考訳(メタデータ) (2021-04-28T15:13:12Z) - Semantic Segmentation on Swiss3DCities: A Benchmark Study on Aerial
Photogrammetric 3D Pointcloud Dataset [67.44497676652173]
スイスの3つの都市から採取された総面積2.7 km2$の屋外3Dポイントクラウドデータセットを紹介した。
データセットは、ポイントごとのラベルによるセマンティックセグメンテーションのために手動でアノテートされ、高解像度カメラを備えたマルチローターによって取得された画像のフォトグラムを用いて構築される。
論文 参考訳(メタデータ) (2020-12-23T21:48:47Z) - Semantic Segmentation of Surface from Lidar Point Cloud [15.882128188732016]
Lidarセンサーは、ポイントクラウドのフォーマットで、環境のほぼ正確な3Dマップをリアルタイムで生成することができる。
データはSLAMに関連する情報を抽出するのに適していますが、ポイントクラウドでの何百万ポイントの処理は非常に高価です。
提案手法では,クラウドから意味的にラベル付けされた表面セグメントをリアルタイムで抽出できる高速アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-13T13:06:26Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
我々は、30億点近い注釈付きポイントを持つ都市規模の測光点クラウドデータセットを提示する。
私たちのデータセットは、イギリスの3つの都市からなり、都市の景観の約7.6km2をカバーしています。
我々は,データセット上での最先端アルゴリズムの性能を評価し,その結果を包括的に分析する。
論文 参考訳(メタデータ) (2020-09-07T14:47:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。