The time-energy uncertainty relation for quantum events
- URL: http://arxiv.org/abs/2108.13974v1
- Date: Tue, 31 Aug 2021 16:57:12 GMT
- Title: The time-energy uncertainty relation for quantum events
- Authors: Matteo Fadel and Lorenzo Maccone
- Abstract summary: Textbook quantum mechanics treats time as a classical parameter, and not as a quantum observable with an associated Hermitian operator.
quantum clocks allow for a measurement of the "time at which an event happens" by conditioning the system's evolution on an additional quantum degree of freedom.
We derive here two em true uncertainty relations that relate the uncertainty in the quantum measurement of the time at which a quantum event happens on a system to its energy uncertainty.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Textbook quantum mechanics treats time as a classical parameter, and not as a
quantum observable with an associated Hermitian operator. For this reason, to
make sense of usual time-energy uncertainty relations such as $\Delta {t}\Delta
E\gtrsim\hbar$, the term $\Delta t$ must be interpreted as a time interval, and
not as a time measurement uncertainty due to quantum noise. However, quantum
clocks allow for a measurement of the "time at which an event happens" by
conditioning the system's evolution on an additional quantum degree of freedom.
Within this framework, we derive here two {\em true} uncertainty relations that
relate the uncertainty in the quantum measurement of the time at which a
quantum event happens on a system to its energy uncertainty.
Related papers
- On the mutual exclusiveness of time and position in quantum physics and
the corresponding uncertainty relation for free falling particles [0.0]
We argue that measurements of time-of-arrival $T_x$ at position $x$ and position $X_t$ at time $t$ are mutually exclusive for a quantum system.
For a quantum particle of mass $m$ falling in a uniform gravitational field $g$, we show that the corresponding uncertainty relation can be expressed as $Delta T_x Delta X_t geq frachbar2mg$.
arXiv Detail & Related papers (2024-03-10T01:08:09Z) - Time and event symmetry in quantum mechanics [0.0]
We find that recent time symmetric interpretations of quantum mechanics fail to respect event symmetry.
We then use this model to resolve conceptual paradoxes with time symmetric quantum mechanics within an all-at-once', atemporal picture.
arXiv Detail & Related papers (2023-12-21T01:59:21Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - A Quantum Informational Approach to the Problem of Time [0.0]
We argue using quantum information theory that the Hamiltonian constraint in quantum gravity cannot probe change.
If the time-reparametization symmetry is spontaneously broken due to the formation of quantum cosmological time crystals, these problems can be resolved.
arXiv Detail & Related papers (2021-12-02T01:30:53Z) - On the Problem of Time(s) in Quantum Mechanics and Quantum Gravity:
recent integrating developments and outlook [0.0]
How to restore time is the Problem of Time(s)
It introduces an intrinsic time property tau associated with the mass of the system.
It invalidates Pauli's objection to the existence of a time operator.
arXiv Detail & Related papers (2021-04-20T17:51:05Z) - A quantum formalism for events and how time can emerge from its
foundations [0.0]
We extend the classical concept of an event to the quantum domain by defining an event as a transfer of information between physical systems.
We propose that a well-defined instant of time, like any other observable, arises from a single event, thus being an observer-dependent property.
arXiv Detail & Related papers (2020-07-01T14:23:04Z) - Quantum time dilation: A new test of relativistic quantum theory [91.3755431537592]
A novel quantum time dilation effect is shown to arise when a clock moves in a quantum superposition of two relativistic velocities.
This effect is argued to be measurable using existing atomic interferometry techniques, potentially offering a new test of relativistic quantum theory.
arXiv Detail & Related papers (2020-04-22T19:26:53Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.