On the mutual exclusiveness of time and position in quantum physics and
the corresponding uncertainty relation for free falling particles
- URL: http://arxiv.org/abs/2403.06057v1
- Date: Sun, 10 Mar 2024 01:08:09 GMT
- Title: On the mutual exclusiveness of time and position in quantum physics and
the corresponding uncertainty relation for free falling particles
- Authors: Mathieu Beau, Lionel Martellini
- Abstract summary: We argue that measurements of time-of-arrival $T_x$ at position $x$ and position $X_t$ at time $t$ are mutually exclusive for a quantum system.
For a quantum particle of mass $m$ falling in a uniform gravitational field $g$, we show that the corresponding uncertainty relation can be expressed as $Delta T_x Delta X_t geq frachbar2mg$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The uncertainty principle is one of the characteristic properties of quantum
theory, where it signals the incompatibility of two types of measurements. In
this paper, we argue that measurements of time-of-arrival $T_x$ at position $x$
and position $X_t$ at time $t$ are mutually exclusive for a quantum system,
each providing complementary information about the state of that system. For a
quantum particle of mass $m$ falling in a uniform gravitational field $g$, we
show that the corresponding uncertainty relation can be expressed as $\Delta
T_x \Delta X_t \geq \frac{\hbar}{2mg}$. This uncertainty relationship can be
taken as evidence of the presence of a form of epistemic incompatibility in the
sense that preparing the initial state of the system so as to decrease the
measured position uncertainty will lead to an increase in the measured
time-of-arrival uncertainty. These findings can be empirically tested in the
context of ongoing or forthcoming experiments on measurements of
time-of-arrival for free-falling quantum particles.
Related papers
- Quantum determinism and completeness restored by indistinguishability and long-time particle detection [0.0]
We argue that measurement data in quantum physics can be rigorously interpreted only as a result of a statistical, macroscopic process.
We show with the illustrative cases of the Schr"odinger cat and the Bell experiment that once the Born rule is abandoned on the level of a single particle, realism, locality and causality are restored.
arXiv Detail & Related papers (2024-09-22T18:15:24Z) - Measurement incompatibility is strictly stronger than disturbance [44.99833362998488]
Heisenberg argued that measurements irreversibly alter the state of the system on which they are acting, causing an irreducible disturbance on subsequent measurements.
This article shows that measurement incompatibility is indeed a sufficient condition for irreversibility of measurement disturbance.
However, we exhibit a toy theory, termed the minimal classical theory (MCT), that is a counterexample for the converse implication.
arXiv Detail & Related papers (2023-05-26T13:47:00Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Quantum Discord Witness with Uncharacterized Devices [18.751513188036334]
We propose a new approach using uncharacterized measurements to witness quantum discord of an unknown bipartite state within arbitrary dimension system.
The feature of high robustness against device imperfections, such as loss-tolerance and error-tolerance, shows our method is experimentally feasible.
arXiv Detail & Related papers (2023-03-20T14:51:53Z) - Effect of Measurement Backaction on Quantum Clock Precision Studied with
a Superconducting Circuit [13.318874561490933]
We study the precision of a quantum clock near zero temperature.
We find an equality for the precision of the clock in each regime.
We experimentally verify that our quantum clock obeys the kinetic uncertainty relation for the precision.
arXiv Detail & Related papers (2022-07-22T12:29:34Z) - Uncertainty Relations in Pre- and Post-Selected Systems [0.0]
We derive Robertson-Heisenberg like uncertainty relation for two incompatible observables in a pre- and post-selected (PPS) system.
Unlike the standard quantum system, the PPS system makes it feasible to prepare sharply a quantum state for non-commuting observables.
arXiv Detail & Related papers (2022-07-15T18:15:28Z) - Events in quantum mechanics are maximally non-absolute [0.9176056742068814]
We prove that quantum correlations can be maximally non-absolute according to both quantifiers.
We show that chained Bell inequalities (and relaxations thereof) are also valid constraints for Wigner's experiment.
arXiv Detail & Related papers (2021-12-19T21:15:16Z) - The time-energy uncertainty relation for quantum events [0.0]
Textbook quantum mechanics treats time as a classical parameter, and not as a quantum observable with an associated Hermitian operator.
quantum clocks allow for a measurement of the "time at which an event happens" by conditioning the system's evolution on an additional quantum degree of freedom.
We derive here two em true uncertainty relations that relate the uncertainty in the quantum measurement of the time at which a quantum event happens on a system to its energy uncertainty.
arXiv Detail & Related papers (2021-08-31T16:57:12Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Quantum correlations and quantum-memory-assisted entropic uncertainty
relation in a quantum dot system [0.0]
Uncertainty principle is one of the comprehensive and fundamental concept in quantum theory.
We will study the quantum correlation and quantum memory assisted entropic uncertainty in a quantum dot system.
arXiv Detail & Related papers (2020-06-08T05:16:09Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.