Improvement in quantum communication using quantum switch
- URL: http://arxiv.org/abs/2108.14001v6
- Date: Mon, 10 Apr 2023 09:24:03 GMT
- Title: Improvement in quantum communication using quantum switch
- Authors: Arindam Mitra, Himanshu Badhani, Sibasish Ghosh
- Abstract summary: We show that some useless (for communication) channels may provide useful communication under the action of quantum switch.
We demonstrate that the quantum switch can also be useful in preventing the loss of coherence in a system.
- Score: 4.350783459690612
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Applications of the quantum switch on quantum channels have recently become a
topic of intense discussion. In the present work, we show that some useless
(for communication) channels may provide useful communication under the action
of quantum switch for several information-theoretic tasks: quantum random
access codes, quantum steering, etc. We demonstrate that the quantum switch can
also be useful in preventing the loss of coherence in a system when only
coherence-breaking channels are the available channels for communication. We
also show that if a useless quantum channel does not provide useful
communication even after using a quantum switch, concatenating the channel with
another suitable quantum channel, and subsequently using the switch, one may
achieve useful communication. Finally, we discuss how the introduction of noise
in the quantum switch can reduce the advantage that the switch provides.
Related papers
- Unextendible entanglement of quantum channels [4.079147243688764]
We study the ability of quantum channels to perform quantum communication tasks.
A quantum channel can distill a highly entangled state between two parties.
We generalize the formalism of $k$-extendibility to bipartite superchannels.
arXiv Detail & Related papers (2024-07-22T18:00:17Z) - Covert Quantum Communication Over Optical Channels [2.094817774591302]
We show a emphsquare root law (SRL) for quantum covert communication similar to that for classical.
Our proof uses photonic dual-rail qubit encoding, which has been proposed for long-range repeater-based quantum communication.
Our converse employs prior covert signal power limit results and adapts well-known methods to upper bound quantum capacity of optical channels.
arXiv Detail & Related papers (2024-01-12T18:54:56Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Classical analogue of quantum superdense coding and communication advantage of a single quantum system [0.0]
We show that a qubit communication without any assistance of classical shared randomness can achieve the goal.
We also study communication utility of a class of non-classical toy systems described by symmetric polygonal state spaces.
arXiv Detail & Related papers (2022-02-14T15:29:59Z) - Quantum communication using a quantum switch of quantum switches [13.939388417767136]
We show that two quantum switches placed in a quantum superposition of their alternative orders can transmit a qubit, without any error, with a probability higher than that achievable with the quantum switches individually.
We also show that there are situations where there is no communication advantage over the individual quantum switches.
arXiv Detail & Related papers (2021-11-16T07:31:58Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Random-Receiver Quantum Communication [0.4893345190925177]
We introduce the task of random-receiver quantum communication, in which a sender transmits a quantum message to a receiver chosen from a list of n spatially separated parties.
The choice of receiver is unknown to the sender, but is known by the n parties, who coordinate their actions by exchanging classical messages.
arXiv Detail & Related papers (2020-12-31T05:57:15Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.