Capability of anti-degradable quantum channel with additional entanglement
- URL: http://arxiv.org/abs/2501.06839v1
- Date: Sun, 12 Jan 2025 15:17:00 GMT
- Title: Capability of anti-degradable quantum channel with additional entanglement
- Authors: Changchun Zhong,
- Abstract summary: We show that a type of quantum channel known as the anti-degradable one-mode Gaussian channel can be activated" to transmit quantum information.
Beyond its theoretical implications, this activation can also be realized in practical systems.
- Score: 0.0
- License:
- Abstract: Quantum communication theory focuses on the study of quantum channels for transmitting quantum information, where the transmission rate is measured by quantum channel capacity. This quantity exhibits several intriguing properties, such as non-additivity, superactivation and so on. In this work, we show that a type of quantum channel known as the anti-degradable one-mode Gaussian channel -- whose capacity is believed to be zero -- can be ``activated" to transmit quantum information through the introduction of quantum entanglement. Although the channel's output alone cannot be used to retrieve the input signal, combining it with extra entanglement makes this possible. Beyond its theoretical implications, this activation can also be realized in practical systems. For example, in electro-optic systems used for quantum transduction in the two-mode squeezing interaction regime, the transduction channel is anti-degradable. We demonstrate that this system can transmit microwave-optical quantum information with the assistance of entanglement with an ancillary mode. This results in a new type of quantum transducer that exhibits positive quantum capacity over a wide parameter space.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Fundamental limitations on the recoverability of quantum processes [0.6990493129893111]
We determine fundamental limitations on how well the physical transformation on quantum channels can be undone or reversed.
We refine (strengthen) the quantum data processing inequality for quantum channels under the action of quantum superchannels.
We also provide a refined inequality for the entropy change of quantum channels under the action of an arbitrary quantum superchannel.
arXiv Detail & Related papers (2024-03-19T17:50:24Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum Network Tomography with Multi-party State Distribution [10.52717496410392]
characterization of quantum channels in a quantum network is of paramount importance.
We introduce the problem of Quantum Network Tomography.
We study this problem in detail for the case of arbitrary star quantum networks with quantum channels described by a single Pauli operator.
arXiv Detail & Related papers (2022-06-06T21:47:09Z) - Multipartite entanglement to boost superadditivity of coherent
information in quantum communication lines with polarization dependent losses [0.0]
We show that in the limit of the infinite number of channel uses the superadditivity phenomenon takes place whenever the channel is neither degradable nor antidegradable.
We also provide a method how to modify the proposed states and get a higher quantum communication rate by doubling the number of channel uses.
arXiv Detail & Related papers (2021-09-08T12:24:44Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Detecting Quantum Capacities of Continuous-Variable Quantum Channels [0.7614628596146599]
We introduce a method for detecting the quantum capacity of continuous variable communication channels and memories without performing a full process tomography.
Our method works in the general scenario where the devices are used a finite number of times, can exhibit correlations across multiple uses, and can change dynamically under the control of a malicious adversary.
arXiv Detail & Related papers (2021-08-30T16:18:39Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Entropic singularities give rise to quantum transmission [3.8073142980733]
Non-additivity allows quantum devices (aka quantum channels) to send more information than expected.
We prove a general theorem concerning positivity of a channel's coherent information.
A wide class of zero quantum capacity qubit channels can assist an incomplete erasure channel in sending quantum information.
arXiv Detail & Related papers (2020-03-23T16:32:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.