Quantized convolutional neural networks through the lens of partial
differential equations
- URL: http://arxiv.org/abs/2109.00095v1
- Date: Tue, 31 Aug 2021 22:18:52 GMT
- Title: Quantized convolutional neural networks through the lens of partial
differential equations
- Authors: Ido Ben-Yair, Gil Ben Shalom, Moshe Eliasof, Eran Treister
- Abstract summary: Quantization of Convolutional Neural Networks (CNNs) is a common approach to ease the computational burden involved in the deployment of CNNs.
In this work, we explore ways to improve quantized CNNs using PDE-based perspective and analysis.
- Score: 6.88204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization of Convolutional Neural Networks (CNNs) is a common approach to
ease the computational burden involved in the deployment of CNNs, especially on
low-resource edge devices. However, fixed-point arithmetic is not natural to
the type of computations involved in neural networks. In this work, we explore
ways to improve quantized CNNs using PDE-based perspective and analysis. First,
we harness the total variation (TV) approach to apply edge-aware smoothing to
the feature maps throughout the network. This aims to reduce outliers in the
distribution of values and promote piece-wise constant maps, which are more
suitable for quantization. Secondly, we consider symmetric and stable variants
of common CNNs for image classification, and Graph Convolutional Networks
(GCNs) for graph node-classification. We demonstrate through several
experiments that the property of forward stability preserves the action of a
network under different quantization rates. As a result, stable quantized
networks behave similarly to their non-quantized counterparts even though they
rely on fewer parameters. We also find that at times, stability even aids in
improving accuracy. These properties are of particular interest for sensitive,
resource-constrained, low-power or real-time applications like autonomous
driving.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - On the rates of convergence for learning with convolutional neural networks [9.772773527230134]
We study approximation and learning capacities of convolutional neural networks (CNNs) with one-side zero-padding and multiple channels.
We derive convergence rates for estimators based on CNNs in many learning problems.
It is also shown that the obtained rates for classification are minimax optimal in some common settings.
arXiv Detail & Related papers (2024-03-25T06:42:02Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Parameter Convex Neural Networks [13.42851919291587]
We propose the exponential multilayer neural network (EMLP) which is convex with regard to the parameters of the neural network under some conditions.
For late experiments, we use the same architecture to make the exponential graph convolutional network (EGCN) and do the experiment on the graph classificaion dataset.
arXiv Detail & Related papers (2022-06-11T16:44:59Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
We modify a post-training neural-network quantization method, GPFQ, that is based on a greedy path-following mechanism.
We prove that for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights.
arXiv Detail & Related papers (2022-01-26T18:47:38Z) - Implicit Equivariance in Convolutional Networks [1.911678487931003]
Implicitly Equivariant Networks (IEN) induce equivariant in the different layers of a standard CNN model.
We show IEN outperforms the state-of-the-art rotation equivariant tracking method while providing faster inference speed.
arXiv Detail & Related papers (2021-11-28T14:44:17Z) - Stability of Neural Networks on Manifolds to Relative Perturbations [118.84154142918214]
Graph Neural Networks (GNNs) show impressive performance in many practical scenarios.
GNNs can scale well on large size graphs, but this is contradicted by the fact that existing stability bounds grow with the number of nodes.
arXiv Detail & Related papers (2021-10-10T04:37:19Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
arXiv Detail & Related papers (2020-12-04T19:50:09Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.