Contrastive Multiview Coding with Electro-optics for SAR Semantic
Segmentation
- URL: http://arxiv.org/abs/2109.00120v1
- Date: Tue, 31 Aug 2021 23:55:41 GMT
- Title: Contrastive Multiview Coding with Electro-optics for SAR Semantic
Segmentation
- Authors: Keumgang Cha, Junghoon Seo, Yeji Choi
- Abstract summary: We propose multi-modal representation learning for SAR semantic segmentation.
Unlike previous studies, our method jointly uses EO imagery, SAR imagery, and a label mask.
Several experiments show that our approach is superior to the existing methods in model performance, sample efficiency, and convergence speed.
- Score: 0.6445605125467573
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the training of deep learning models, how the model parameters are
initialized greatly affects the model performance, sample efficiency, and
convergence speed. Representation learning for model initialization has
recently been actively studied in the remote sensing field. In particular, the
appearance characteristics of the imagery obtained using the a synthetic
aperture radar (SAR) sensor are quite different from those of general
electro-optical (EO) images, and thus representation learning is even more
important in remote sensing domain. Motivated from contrastive multiview
coding, we propose multi-modal representation learning for SAR semantic
segmentation. Unlike previous studies, our method jointly uses EO imagery, SAR
imagery, and a label mask. Several experiments show that our approach is
superior to the existing methods in model performance, sample efficiency, and
convergence speed.
Related papers
- Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images [11.916941756499435]
In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images.
We introduce a pioneering fine-tuning-based technique, termed InfRS, designed to facilitate the incremental learning of novel classes.
We develop a prototypical calibration strategy based on the Wasserstein distance to mitigate the catastrophic forgetting problem.
arXiv Detail & Related papers (2024-05-18T13:39:50Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Adapting Segment Anything Model for Change Detection in HR Remote
Sensing Images [18.371087310792287]
This work aims to utilize the strong visual recognition capabilities of Vision Foundation Models (VFMs) to improve the change detection of high-resolution Remote Sensing Images (RSIs)
We employ the visual encoder of FastSAM, an efficient variant of the SAM, to extract visual representations in RS scenes.
To utilize the semantic representations that are inherent to SAM features, we introduce a task-agnostic semantic learning branch to model the semantic latent in bi-temporal RSIs.
The resulting method, SAMCD, obtains superior accuracy compared to the SOTA methods and exhibits a sample-efficient learning ability that is comparable to semi-
arXiv Detail & Related papers (2023-09-04T08:23:31Z) - A Model-data-driven Network Embedding Multidimensional Features for
Tomographic SAR Imaging [5.489791364472879]
We propose a new model-data-driven network to achieve tomoSAR imaging based on multi-dimensional features.
We add two 2D processing modules, both convolutional encoder-decoder structures, to enhance multi-dimensional features of the imaging scene effectively.
Compared with the conventional CS-based FISTA method and DL-based gamma-Net method, the result of our proposed method has better performance on completeness while having decent imaging accuracy.
arXiv Detail & Related papers (2022-11-28T02:01:43Z) - Exploring The Role of Mean Teachers in Self-supervised Masked
Auto-Encoders [64.03000385267339]
Masked image modeling (MIM) has become a popular strategy for self-supervised learning(SSL) of visual representations with Vision Transformers.
We present a simple SSL method, the Reconstruction-Consistent Masked Auto-Encoder (RC-MAE) by adding an EMA teacher to MAE.
RC-MAE converges faster and requires less memory usage than state-of-the-art self-distillation methods during pre-training.
arXiv Detail & Related papers (2022-10-05T08:08:55Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - A Dual-fusion Semantic Segmentation Framework With GAN For SAR Images [10.147351262526282]
A network based on the widely used encoderdecoder architecture is proposed to accomplish the synthetic aperture radar (SAR) images segmentation.
With the better representation capability of optical images, we propose to enrich SAR images with generated optical images via the generative adversative network (GAN) trained by numerous SAR and optical images.
arXiv Detail & Related papers (2022-06-02T15:22:29Z) - DiVAE: Photorealistic Images Synthesis with Denoising Diffusion Decoder [73.1010640692609]
We propose a VQ-VAE architecture model with a diffusion decoder (DiVAE) to work as the reconstructing component in image synthesis.
Our model achieves state-of-the-art results and generates more photorealistic images specifically.
arXiv Detail & Related papers (2022-06-01T10:39:12Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.