InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images
- URL: http://arxiv.org/abs/2405.11293v1
- Date: Sat, 18 May 2024 13:39:50 GMT
- Title: InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images
- Authors: Wuzhou Li, Jiawei Zhou, Xiang Li, Yi Cao, Guang Jin, Xuemin Zhang,
- Abstract summary: In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images.
We introduce a pioneering fine-tuning-based technique, termed InfRS, designed to facilitate the incremental learning of novel classes.
We develop a prototypical calibration strategy based on the Wasserstein distance to mitigate the catastrophic forgetting problem.
- Score: 11.916941756499435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the field of few-shot detection within remote sensing imagery has witnessed significant advancements. Despite these progresses, the capacity for continuous conceptual learning still poses a significant challenge to existing methodologies. In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images. We introduce a pioneering fine-tuningbased technique, termed InfRS, designed to facilitate the incremental learning of novel classes using a restricted set of examples, while concurrently preserving the performance on established base classes without the need to revisit previous datasets. Specifically, we pretrain the model using abundant data from base classes and then generate a set of class-wise prototypes that represent the intrinsic characteristics of the data. In the incremental learning stage, we introduce a Hybrid Prototypical Contrastive (HPC) encoding module for learning discriminative representations. Furthermore, we develop a prototypical calibration strategy based on the Wasserstein distance to mitigate the catastrophic forgetting problem. Comprehensive evaluations on the NWPU VHR-10 and DIOR datasets demonstrate that our model can effectively solve the iFSOD problem in remote sensing images. Code will be released.
Related papers
- Unsupervised Few-Shot Continual Learning for Remote Sensing Image Scene Classification [14.758282519523744]
Unsupervised flat-wide learning approach (UNISA) for unsupervised few-shot continual learning approaches of remote sensing image scene classifications.
Our numerical study with remote sensing image scene datasets and a hyperspectral dataset confirms the advantages of our solution.
arXiv Detail & Related papers (2024-06-04T03:06:41Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing.
We propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC)
Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects.
arXiv Detail & Related papers (2024-03-20T08:15:18Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study [5.489791364472879]
Near-field synthetic aperture radar (SAR) provides a high-resolution image of a target's scattering distribution-hot spots.
Meanwhile, imaging result suffers inevitable degradation from sidelobes, clutters, and noises.
To restore the image, current methods make simplified assumptions; for example, the point spread function (PSF) is spatially consistent, the target consists of sparse point scatters, etc.
We reformulate the degradation model into a spatially variable complex-convolution model, where the near-field SAR's system response is considered.
A model-based deep learning network is designed to restore the
arXiv Detail & Related papers (2022-11-28T01:28:33Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Zero-sample surface defect detection and classification based on
semantic feedback neural network [13.796631421521765]
We propose an Ensemble Co-training algorithm, which adaptively reduces the prediction error in image tag embedding from multiple angles.
Various experiments conducted on the zero-shot dataset and the cylinder liner dataset in the industrial field provide competitive results.
arXiv Detail & Related papers (2021-06-15T08:26:36Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Incremental Few-Shot Object Detection [96.02543873402813]
OpeN-ended Centre nEt is a detector for incrementally learning to detect class objects with few examples.
ONCE fully respects the incremental learning paradigm, with novel class registration requiring only a single forward pass of few-shot training samples.
arXiv Detail & Related papers (2020-03-10T12:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.