A Dual-fusion Semantic Segmentation Framework With GAN For SAR Images
- URL: http://arxiv.org/abs/2206.01096v1
- Date: Thu, 2 Jun 2022 15:22:29 GMT
- Title: A Dual-fusion Semantic Segmentation Framework With GAN For SAR Images
- Authors: Donghui Li, Jia Liu, Fang Liu, Wenhua Zhang, Andi Zhang, Wenfei Gao,
Jiao Shi
- Abstract summary: A network based on the widely used encoderdecoder architecture is proposed to accomplish the synthetic aperture radar (SAR) images segmentation.
With the better representation capability of optical images, we propose to enrich SAR images with generated optical images via the generative adversative network (GAN) trained by numerous SAR and optical images.
- Score: 10.147351262526282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based semantic segmentation is one of the popular methods in
remote sensing image segmentation. In this paper, a network based on the widely
used encoderdecoder architecture is proposed to accomplish the synthetic
aperture radar (SAR) images segmentation. With the better representation
capability of optical images, we propose to enrich SAR images with generated
optical images via the generative adversative network (GAN) trained by numerous
SAR and optical images. These optical images can be used as expansions of
original SAR images, thus ensuring robust result of segmentation. Then the
optical images generated by the GAN are stitched together with the
corresponding real images. An attention module following the stitched data is
used to strengthen the representation of the objects. Experiments indicate that
our method is efficient compared to other commonly used methods
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
Hyperspectral image (HSI) classification is challenging due to spatial variability caused by complex imaging conditions.
We propose a tri-spectral image generation pipeline that transforms HSI into high-quality tri-spectral images.
Our proposed method outperforms state-of-the-art methods for HSI classification.
arXiv Detail & Related papers (2023-04-19T18:32:52Z) - Comparison of convolutional neural networks for cloudy optical images
reconstruction from single or multitemporal joint SAR and optical images [0.21079694661943604]
We focus on the evaluation of convolutional neural networks that use jointly SAR and optical images to retrieve the missing contents in one single polluted optical image.
We propose a simple framework that eases the creation of datasets for the training of deep nets targeting optical image reconstruction.
We show how space partitioning data structures help to query samples in terms of cloud coverage, relative acquisition date, pixel validity and relative proximity between SAR and optical images.
arXiv Detail & Related papers (2022-04-01T13:31:23Z) - Object discovery and representation networks [78.16003886427885]
We propose a self-supervised learning paradigm that discovers the structure encoded in priors by itself.
Our method, Odin, couples object discovery and representation networks to discover meaningful image segmentations without any supervision.
arXiv Detail & Related papers (2022-03-16T17:42:55Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Contrastive Multiview Coding with Electro-optics for SAR Semantic
Segmentation [0.6445605125467573]
We propose multi-modal representation learning for SAR semantic segmentation.
Unlike previous studies, our method jointly uses EO imagery, SAR imagery, and a label mask.
Several experiments show that our approach is superior to the existing methods in model performance, sample efficiency, and convergence speed.
arXiv Detail & Related papers (2021-08-31T23:55:41Z) - Denoising and Optical and SAR Image Classifications Based on Feature
Extraction and Sparse Representation [0.0]
This paper presents a method for denoising, feature extraction and compares classifications of Optical and SAR images.
Optical image data have been used by the Remote Sensing workforce to study land use and cover since such data is easily interpretable.
arXiv Detail & Related papers (2021-06-03T14:39:30Z) - PeaceGAN: A GAN-based Multi-Task Learning Method for SAR Target Image
Generation with a Pose Estimator and an Auxiliary Classifier [50.17500790309477]
We propose a novel GAN-based multi-task learning (MTL) method for SAR target image generation, called PeaceGAN.
PeaceGAN uses both pose angle and target class information, which makes it possible to produce SAR target images of desired target classes at intended pose angles.
arXiv Detail & Related papers (2021-03-29T10:03:09Z) - Synthetic Glacier SAR Image Generation from Arbitrary Masks Using
Pix2Pix Algorithm [12.087729834358928]
Supervised machine learning requires a large amount of labeled data to achieve proper test results.
In this work, we propose to alleviate the issue of limited training data by generating synthetic SAR images with the pix2pix algorithm.
We present different models, perform a comparative study and demonstrate that this approach synthesizes convincing glaciers in SAR images with promising qualitative and quantitative results.
arXiv Detail & Related papers (2021-01-08T23:30:00Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.