論文の概要: Balancing Performance and Human Autonomy with Implicit Guidance Agent
- arxiv url: http://arxiv.org/abs/2109.00414v1
- Date: Wed, 1 Sep 2021 14:47:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-02 14:25:07.479393
- Title: Balancing Performance and Human Autonomy with Implicit Guidance Agent
- Title(参考訳): 暗黙的誘導エージェントによるパフォーマンスと自律性のバランス
- Authors: Ryo Nakahashi and Seiji Yamada
- Abstract要約: 暗黙のガイダンスは、人間が計画の改善と自律性維持のバランスを維持するために有効であることを示す。
我々は、ベイズ的思考理論を既存の協調計画アルゴリズムに統合することにより、暗黙のガイダンスを持つ協調エージェントをモデル化した。
- 参考スコア(独自算出の注目度): 8.071506311915396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The human-agent team, which is a problem in which humans and autonomous
agents collaborate to achieve one task, is typical in human-AI collaboration.
For effective collaboration, humans want to have an effective plan, but in
realistic situations, they might have difficulty calculating the best plan due
to cognitive limitations. In this case, guidance from an agent that has many
computational resources may be useful. However, if an agent guides the human
behavior explicitly, the human may feel that they have lost autonomy and are
being controlled by the agent. We therefore investigated implicit guidance
offered by means of an agent's behavior. With this type of guidance, the agent
acts in a way that makes it easy for the human to find an effective plan for a
collaborative task, and the human can then improve the plan. Since the human
improves their plan voluntarily, he or she maintains autonomy. We modeled a
collaborative agent with implicit guidance by integrating the Bayesian Theory
of Mind into existing collaborative-planning algorithms and demonstrated
through a behavioral experiment that implicit guidance is effective for
enabling humans to maintain a balance between improving their plans and
retaining autonomy.
- Abstract(参考訳): 人間と自律的なエージェントがひとつのタスクを達成するために協力する問題であるヒューマンエージェントチームは、人間とAIのコラボレーションで典型的である。
効果的なコラボレーションのためには、人間は効果的な計画を持ちたがるが、現実的な状況では、認知的限界のために最適な計画を計算するのが困難になる。
この場合、多くの計算資源を持つエージェントからのガイダンスが有用かもしれない。
しかし、エージェントが人間の行動を明示的に導くと、人間は自律性を失い、エージェントによって制御されていると感じるかもしれない。
そこで,エージェントの行動によって提供される暗黙的指導について検討した。
この種の指導により、エージェントは、人間が協調作業の効果的な計画を見つけやすくし、そして、人間が計画を改善することができるように行動する。
人間は自発的に計画を改善するので、自律性を維持する。
ベイズ理論を既存の協調計画アルゴリズムに組み込むことで,暗黙的指導を伴う協調エージェントをモデル化し,暗黙的指導が人間の計画改善と自律性維持のバランスを維持する上で有効であることを示す行動実験を行った。
関連論文リスト
- Learning to Assist Humans without Inferring Rewards [65.28156318196397]
我々は、エンパワーメントのレンズを通して支援を研究する先行研究に基づいて構築する。
補助剤は、人間の行動の影響を最大化することを目的としている。
これらの表現は、先行研究と類似したエンパワーメントの概念を推定する。
論文 参考訳(メタデータ) (2024-11-04T21:31:04Z) - On the Utility of Accounting for Human Beliefs about AI Intention in Human-AI Collaboration [9.371527955300323]
我々は、人間がどのように解釈し、AIパートナーの意図を判断するかを捉える人間の信念のモデルを開発する。
私たちは、人間と対話するための戦略を考案する際に、人間の行動と人間の信念の両方を取り入れたAIエージェントを作成します。
論文 参考訳(メタデータ) (2024-06-10T06:39:37Z) - Mixed-Initiative Human-Robot Teaming under Suboptimality with Online Bayesian Adaptation [0.6591036379613505]
我々は,最適人-エージェントチームの性能向上のための計算モデルと最適化手法を開発した。
我々は,ロボットが逐次意思決定ゲームにおいて,その支援に従おうとする人々の意思を推測できるオンラインベイズアプローチを採用する。
ユーザの好みやチームのパフォーマンスは,ロボットの介入スタイルによって明らかに異なります。
論文 参考訳(メタデータ) (2024-03-24T14:38:18Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Investigating Agency of LLMs in Human-AI Collaboration Tasks [24.562034082480608]
我々は社会認知理論に基づいて、エージェントが対話で表現される特徴の枠組みを構築する。
我々は、83人の人間と人間の協力的なインテリアデザインの会話のデータセットを収集する。
論文 参考訳(メタデータ) (2023-05-22T08:17:14Z) - Learning to Influence Human Behavior with Offline Reinforcement Learning [70.7884839812069]
人間の準最適性を捉える必要があるような環境での影響に焦点を当てる。
人間によるオンライン実験は安全ではない可能性があり、環境の高忠実度シミュレータを作成することは現実的ではないことが多い。
オフライン強化学習は、観察された人間・人間の行動の要素を拡張し、組み合わせることで、人間に効果的に影響を及ぼすことができることを示す。
論文 参考訳(メタデータ) (2023-03-03T23:41:55Z) - PECAN: Leveraging Policy Ensemble for Context-Aware Zero-Shot Human-AI
Coordination [52.991211077362586]
本研究では,集団におけるパートナーの多様性を高めるための政策アンサンブル手法を提案する。
そこで我々は,egoエージェントがパートナーの潜在的ポリシープリミティブを分析し,識別するためのコンテキスト認識手法を開発した。
このようにして、エゴエージェントは多様なパートナーとの共同作業において、より普遍的な協調行動を学ぶことができる。
論文 参考訳(メタデータ) (2023-01-16T12:14:58Z) - Robust Planning for Human-Robot Joint Tasks with Explicit Reasoning on
Human Mental State [2.8246074016493457]
我々は,人間ロボットチームが達成するための既知の目的を持った共有タスクを与えられる,人間に意識したタスク計画問題を考える。
近年のアプローチでは、ロボットが両方のエージェント(共有された)タスクを計画する独立した合理的エージェントのチームとしてそれをモデル化している。
本稿では,実行時の可観測性規約をモデル化し,使用するための新しいアプローチについて述べる。
論文 参考訳(メタデータ) (2022-10-17T09:21:00Z) - A Cognitive Framework for Delegation Between Error-Prone AI and Human
Agents [0.0]
本研究では,認知にインスパイアされた行動モデルを用いて,人間エージェントとAIエージェントの両方の行動を予測する。
予測された振る舞いは、仲介者の使用を通じて人間とAIエージェントの制御を委譲するために使用される。
論文 参考訳(メタデータ) (2022-04-06T15:15:21Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
我々は、AIエージェントでソーシャルインテリジェンスをテストするための課題であるWatch-And-Help(WAH)を紹介する。
WAHでは、AIエージェントは、人間のようなエージェントが複雑な家庭用タスクを効率的に実行するのを助ける必要がある。
マルチエージェントの家庭環境であるVirtualHome-Socialを構築し、計画と学習ベースのベースラインを含むベンチマークを提供する。
論文 参考訳(メタデータ) (2020-10-19T21:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。