論文の概要: Human-AI Collaboration: Trade-offs Between Performance and Preferences
- arxiv url: http://arxiv.org/abs/2503.00248v1
- Date: Fri, 28 Feb 2025 23:50:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:14:36.681193
- Title: Human-AI Collaboration: Trade-offs Between Performance and Preferences
- Title(参考訳): 人間とAIのコラボレーション - パフォーマンスと優先度のトレードオフ
- Authors: Lukas William Mayer, Sheer Karny, Jackie Ayoub, Miao Song, Danyang Tian, Ehsan Moradi-Pari, Mark Steyvers,
- Abstract要約: 人間の行動に配慮したエージェントは、純粋にパフォーマンスを最大化するエージェントよりも好まれることを示す。
我々は、不平等-逆転効果が人間の選択の原動力であることの証拠を見つけ、人々がチームへの有意義な貢献を可能にする協力的なエージェントを好むことを示唆している。
- 参考スコア(独自算出の注目度): 5.172575113585139
- License:
- Abstract: Despite the growing interest in collaborative AI, designing systems that seamlessly integrate human input remains a major challenge. In this study, we developed a task to systematically examine human preferences for collaborative agents. We created and evaluated five collaborative AI agents with strategies that differ in the manner and degree they adapt to human actions. Participants interacted with a subset of these agents, evaluated their perceived traits, and selected their preferred agent. We used a Bayesian model to understand how agents' strategies influence the Human-AI team performance, AI's perceived traits, and the factors shaping human-preferences in pairwise agent comparisons. Our results show that agents who are more considerate of human actions are preferred over purely performance-maximizing agents. Moreover, we show that such human-centric design can improve the likability of AI collaborators without reducing performance. We find evidence for inequality-aversion effects being a driver of human choices, suggesting that people prefer collaborative agents which allow them to meaningfully contribute to the team. Taken together, these findings demonstrate how collaboration with AI can benefit from development efforts which include both subjective and objective metrics.
- Abstract(参考訳): コラボレーションAIへの関心が高まっているにもかかわらず、人間の入力をシームレスに統合するシステムを設計することは大きな課題である。
本研究では,協調エージェントに対する人間の嗜好を体系的に調査するタスクを開発した。
我々は、人間の行動に適応する方法や程度が異なる戦略で、5つの協調AIエージェントを作成し、評価した。
参加者はこれらのエージェントのサブセットと相互作用し、認識された特性を評価し、好みのエージェントを選択した。
エージェントの戦略がHuman-AIチームのパフォーマンス、AIの認識された特性、そしてエージェントのペアワイド比較において人間の嗜好を形成する要因にどのように影響するかを理解するためにベイズモデルを使用した。
以上の結果から,人間の行動に配慮したエージェントの方が,純粋にパフォーマンスを最大化するエージェントよりも望ましいことが示唆された。
さらに、このような人間中心の設計は、性能を低下させることなく、AIコラボレータの柔軟性を向上させることができることを示す。
我々は、不平等-逆転効果が人間の選択の原動力であることの証拠を見つけ、人々がチームへの有意義な貢献を可能にする協力的なエージェントを好むことを示唆している。
これらの知見を総合すると、AIとのコラボレーションが主観的および客観的なメトリクスを含む開発努力の恩恵を受けるかが示される。
関連論文リスト
- Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gymは、エージェント、人間、タスク環境間の非同期で三分割的なインタラクションを可能にするフレームワークである。
シミュレーション条件と実環境条件の両方において,Co-Gymを3つの代表的なタスクでインスタンス化する。
その結果、協調作業員はタスクパフォーマンスにおいて、完全に自律的なエージェントよりも一貫して優れていたことが判明した。
論文 参考訳(メタデータ) (2024-12-20T09:21:15Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
心の理論(ToM)は、他人を理解する上で重要な能力として、人間の協調とコミュニケーションに大きな影響を及ぼす。
Mutual Theory of Mind (MToM) は、ToM能力を持つAIエージェントが人間と協力するときに発生する。
エージェントのToM能力はチームのパフォーマンスに大きな影響を与えず,エージェントの人間的理解を高めていることがわかった。
論文 参考訳(メタデータ) (2024-09-13T13:19:48Z) - Mixed-Initiative Human-Robot Teaming under Suboptimality with Online Bayesian Adaptation [0.6591036379613505]
我々は,最適人-エージェントチームの性能向上のための計算モデルと最適化手法を開発した。
我々は,ロボットが逐次意思決定ゲームにおいて,その支援に従おうとする人々の意思を推測できるオンラインベイズアプローチを採用する。
ユーザの好みやチームのパフォーマンスは,ロボットの介入スタイルによって明らかに異なります。
論文 参考訳(メタデータ) (2024-03-24T14:38:18Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
Recommender、Analyzer、Devil's Advocateの3つのAIの役割について検討する。
以上の結果から,各役割のタスクパフォーマンス,信頼性の適切性,ユーザエクスペリエンスにおける長所と短所が明らかとなった。
これらの洞察は、異なる状況に応じて適応的な機能的役割を持つAIアシスタントを設計する上で、貴重な意味を提供する。
論文 参考訳(メタデータ) (2024-03-04T07:32:28Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Human-AI Collaboration: The Effect of AI Delegation on Human Task
Performance and Task Satisfaction [0.0]
タスク性能とタスク満足度はAIデリゲートによって向上することを示す。
我々は、これらの改善の基盤となるメカニズムとして、人間による自己効力の増大を見いだした。
我々の発見は、AIモデルがより多くの管理責任を引き継ぐことが、人間とAIのコラボレーションの効果的な形態であることを示す最初の証拠を提供する。
論文 参考訳(メタデータ) (2023-03-16T11:02:46Z) - PECAN: Leveraging Policy Ensemble for Context-Aware Zero-Shot Human-AI
Coordination [52.991211077362586]
本研究では,集団におけるパートナーの多様性を高めるための政策アンサンブル手法を提案する。
そこで我々は,egoエージェントがパートナーの潜在的ポリシープリミティブを分析し,識別するためのコンテキスト認識手法を開発した。
このようにして、エゴエージェントは多様なパートナーとの共同作業において、より普遍的な協調行動を学ぶことができる。
論文 参考訳(メタデータ) (2023-01-16T12:14:58Z) - Advancing Human-AI Complementarity: The Impact of User Expertise and
Algorithmic Tuning on Joint Decision Making [10.890854857970488]
ユーザのドメイン知識、AIシステムのメンタルモデル、レコメンデーションへの信頼など、多くの要因がヒューマンAIチームの成功に影響を与える可能性がある。
本研究は,非自明な血管ラベル作成作業において,血管が流れているか停止しているかを被験者に示すことを目的とした。
以上の結果から,AI-Assistantからの推薦はユーザの意思決定に役立つが,AIに対するユーザベースラインのパフォーマンスや,AIエラー型の相補的チューニングといった要因は,チーム全体のパフォーマンスに大きな影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2022-08-16T21:39:58Z) - A Cognitive Framework for Delegation Between Error-Prone AI and Human
Agents [0.0]
本研究では,認知にインスパイアされた行動モデルを用いて,人間エージェントとAIエージェントの両方の行動を予測する。
予測された振る舞いは、仲介者の使用を通じて人間とAIエージェントの制御を委譲するために使用される。
論文 参考訳(メタデータ) (2022-04-06T15:15:21Z) - Warmth and competence in human-agent cooperation [0.7237068561453082]
近年の研究では、深層強化学習で訓練されたAIエージェントが人間と協調できることが示されている。
われわれは2人プレイのソーシャルジレンマであるCoinsで深層強化学習エージェントを訓練している。
参加者の温かさと能力に対する認識は、異なるエージェントに対する表現された嗜好を予測する。
論文 参考訳(メタデータ) (2022-01-31T18:57:08Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
我々は、AIエージェントでソーシャルインテリジェンスをテストするための課題であるWatch-And-Help(WAH)を紹介する。
WAHでは、AIエージェントは、人間のようなエージェントが複雑な家庭用タスクを効率的に実行するのを助ける必要がある。
マルチエージェントの家庭環境であるVirtualHome-Socialを構築し、計画と学習ベースのベースラインを含むベンチマークを提供する。
論文 参考訳(メタデータ) (2020-10-19T21:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。