論文の概要: Capturing Stance Dynamics in Social Media: Open Challenges and Research
Directions
- arxiv url: http://arxiv.org/abs/2109.00475v1
- Date: Wed, 1 Sep 2021 16:28:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-02 14:25:27.830750
- Title: Capturing Stance Dynamics in Social Media: Open Challenges and Research
Directions
- Title(参考訳): ソーシャルメディアにおけるスタンスダイナミクスの捉え方:オープンチャレンジと研究方向
- Authors: Rabab Alkhalifa, Arkaitz Zubiaga
- Abstract要約: ソーシャルメディアプラットフォームは、幅広い社会的関心の問題に関する世論を掘り下げるために金鉱を提供する。
オピニオンマイニング(オピニオンマイニング)は、個々のソーシャルメディア投稿のスタンスを捉え、集約することで、運用できる問題である。
デジタルメディアにおける人的コミュニケーションの時間的進化と計算言語学の交わりについて検討する。
- 参考スコア(独自算出の注目度): 6.531659195805749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media platforms provide a goldmine for mining public opinion on issues
of wide societal interest. Opinion mining is a problem that can be
operationalised by capturing and aggregating the stance of individual social
media posts as supporting, opposing or being neutral towards the issue at hand.
While most prior work in stance detection has investigated datasets with
limited time coverage, interest in investigating longitudinal datasets has
recently increased. Evolving dynamics in linguistic and behavioural patterns
observed in new data require in turn adapting stance detection systems to deal
with the changes. In this survey paper, we investigate the intersection between
computational linguistics and the temporal evolution of human communication in
digital media. We perform a critical review in emerging research considering
dynamics, exploring different semantic and pragmatic factors that impact
linguistic data in general, and stance particularly. We further discuss current
directions in capturing stance dynamics in social media. We organise the
challenges of dealing with stance dynamics, identify open challenges and
discuss future directions in three key dimensions: utterance, context and
influence.
- Abstract(参考訳): ソーシャルメディアプラットフォームは、幅広い社会的な関心事に関する世論を掘り起こすための金鉱を提供する。
意見マイニング(英: opinion mining)とは、個々のソーシャルメディア投稿のスタンスを、問題に対して支援、反対、中立であると捉え、集約することで、運用できる問題である。
スタンス検出における多くの先行研究は、限られた時間範囲でデータセットを調査してきたが、最近、縦断データセットの調査への関心が高まっている。
新しいデータで観察される言語および行動パターンのダイナミクスの進化には、変化に対処するために姿勢検出システムを適用する必要がある。
本稿では,デジタルメディアにおける人的コミュニケーションの時間的進化と計算言語学の交わりについて検討する。
言語データ全般に影響を及ぼす異なる意味的・実用的要因、特にスタンスを探求し、ダイナミクスを考慮した新興研究において批判的レビューを行う。
ソーシャルメディアにおけるスタンスダイナミクスの捉え方についても論じる。
スタンスダイナミクスを扱う課題を整理し,オープンな課題を特定し,発話,文脈,影響という3つの重要な次元で今後の方向性を議論する。
関連論文リスト
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
この包括的調査は、HSモデレーションの最近の歩みを掘り下げている。
大型言語モデル(LLM)と大規模マルチモーダルモデル(LMM)の急成長する役割を強調した。
研究における既存のギャップを、特に表現不足言語や文化の文脈で特定する。
論文 参考訳(メタデータ) (2024-01-30T03:51:44Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
オンラインソーシャルメディア上で政治的分極を特徴付ける機械学習モデルを開発することは、大きな課題である。
これらの課題は主に、注釈付きデータの欠如、ソーシャルメディアデータセットにおけるノイズの存在、膨大な量のデータなど、さまざまな要因に起因している。
本稿では、ソーシャルメディア投稿のラベル付けに、メディアバイアスと投稿コンテンツを活用する2つの方法を紹介する。
ソーシャルメディア投稿の政治的指向を予測することで,現在の機械学習モデルの性能向上を実証する。
論文 参考訳(メタデータ) (2023-11-21T03:34:20Z) - Qualitative Analysis of a Graph Transformer Approach to Addressing Hate
Speech: Adapting to Dynamically Changing Content [8.393770595114763]
我々は、ソーシャルネットワークにおけるヘイトスピーチ検出のために、このソリューションの詳細な質的分析を提供する。
重要な洞察は、コンテキストの概念に関する推論に焦点が当てられていることは、オンライン投稿のマルチモーダル分析をサポートするのに十分な位置にあるということだ。
この問題が特に動的変化のテーマとどのように関係しているかを考察して結論付けます。
論文 参考訳(メタデータ) (2023-01-25T23:32:32Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
著者らは新メディアにおける利用者の相互影響の可能性を検討した。
新型コロナウイルス(COVID-19)対策として、緊急の社会問題について議論する際、攻撃やヘイトスピーチのレベルが高いことが分かった。
結果は、現代のデジタル環境におけるメディアコンテンツの開発に有用である。
論文 参考訳(メタデータ) (2022-08-25T15:53:32Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Didn't see that coming: a survey on non-verbal social human behavior
forecasting [47.99589136455976]
近年,非言語的社会的行動予測が研究コミュニティの関心を集めている。
人間とロボットの相互作用や社会的に認識された人間のモーション生成への直接的な応用は、非常に魅力的な分野である。
本稿では,複数の対話エージェントに対する行動予測問題を,社会的信号予測と人間の動作予測の分野の統合を目的とした汎用的な方法で定義する。
論文 参考訳(メタデータ) (2022-03-04T18:25:30Z) - Stance Detection on Social Media: State of the Art and Trends [5.584060970507506]
ソーシャルメディアにおけるスタンス検出は、感情分析が最適ではないかもしれない様々な社会的・政治的応用のための新たな意見マイニングパラダイムである。
本稿では,これらのコミュニティにおけるスタンス検出の取り組みについて調査し,ソーシャルメディアにおける現在の意見マイニング手法における利用状況について考察する。
ソーシャルメディア上でのスタンス検出手法の徹底的なレビューとして,タスク定義,スタンス検出におけるさまざまなタイプのターゲット,使用する機能,適用されたさまざまな機械学習アプローチについて紹介する。
論文 参考訳(メタデータ) (2020-06-05T19:24:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。