論文の概要: Stance Detection on Social Media: State of the Art and Trends
- arxiv url: http://arxiv.org/abs/2006.03644v5
- Date: Thu, 15 Apr 2021 12:41:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 04:10:15.983663
- Title: Stance Detection on Social Media: State of the Art and Trends
- Title(参考訳): ソーシャルメディアにおけるスタンス検出の現状と動向
- Authors: Abeer AlDayel and Walid Magdy
- Abstract要約: ソーシャルメディアにおけるスタンス検出は、感情分析が最適ではないかもしれない様々な社会的・政治的応用のための新たな意見マイニングパラダイムである。
本稿では,これらのコミュニティにおけるスタンス検出の取り組みについて調査し,ソーシャルメディアにおける現在の意見マイニング手法における利用状況について考察する。
ソーシャルメディア上でのスタンス検出手法の徹底的なレビューとして,タスク定義,スタンス検出におけるさまざまなタイプのターゲット,使用する機能,適用されたさまざまな機械学習アプローチについて紹介する。
- 参考スコア(独自算出の注目度): 5.584060970507506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stance detection on social media is an emerging opinion mining paradigm for
various social and political applications in which sentiment analysis may be
sub-optimal. There has been a growing research interest for developing
effective methods for stance detection methods varying among multiple
communities including natural language processing, web science, and social
computing. This paper surveys the work on stance detection within those
communities and situates its usage within current opinion mining techniques in
social media. It presents an exhaustive review of stance detection techniques
on social media, including the task definition, different types of targets in
stance detection, features set used, and various machine learning approaches
applied. The survey reports state-of-the-art results on the existing benchmark
datasets on stance detection, and discusses the most effective approaches. In
addition, this study explores the emerging trends and different applications of
stance detection on social media. The study concludes by discussing the gaps in
the current existing research and highlights the possible future directions for
stance detection on social media.
- Abstract(参考訳): ソーシャルメディアにおけるスタンス検出は、感情分析が最適ではないかもしれない様々な社会的・政治的応用のための新たな意見マイニングパラダイムである。
自然言語処理,Webサイエンス,ソーシャルコンピューティングなど,複数のコミュニティで異なるスタンス検出手法の効果的な開発への研究関心が高まっている。
本稿では,これらのコミュニティにおけるスタンス検出に関する研究と,ソーシャルメディアにおける現在の意見マイニング手法におけるその活用状況について検討する。
ソーシャルメディア上でのスタンス検出手法の徹底的なレビューとして,タスク定義,スタンス検出におけるさまざまなタイプのターゲット,使用する機能,各種機械学習アプローチについて紹介する。
本調査は,既存ベンチマークデータセットのスタンス検出に関する最新結果を報告し,最も効果的なアプローチについて考察する。
さらに,ソーシャルメディアにおけるスタンス検出の新たなトレンドと応用について検討した。
この研究は、現在の研究のギャップを議論し、ソーシャルメディアにおけるスタンス検出の今後の方向性を明らかにすることで締めくくっている。
関連論文リスト
- Human Action Anticipation: A Survey [86.415721659234]
行動予測に関する文献は、行動予測、活動予測、意図予測、目標予測など、様々なタスクにまたがる。
我々の調査は、この断片化された文献を結びつけることを目的としており、最近の技術革新とモデルトレーニングと評価のための新しい大規模データセットの開発をカバーしています。
論文 参考訳(メタデータ) (2024-10-17T21:37:40Z) - A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Didn't see that coming: a survey on non-verbal social human behavior
forecasting [47.99589136455976]
近年,非言語的社会的行動予測が研究コミュニティの関心を集めている。
人間とロボットの相互作用や社会的に認識された人間のモーション生成への直接的な応用は、非常に魅力的な分野である。
本稿では,複数の対話エージェントに対する行動予測問題を,社会的信号予測と人間の動作予測の分野の統合を目的とした汎用的な方法で定義する。
論文 参考訳(メタデータ) (2022-03-04T18:25:30Z) - Capturing Stance Dynamics in Social Media: Open Challenges and Research
Directions [6.531659195805749]
ソーシャルメディアプラットフォームは、幅広い社会的関心の問題に関する世論を掘り下げるために金鉱を提供する。
オピニオンマイニング(オピニオンマイニング)は、個々のソーシャルメディア投稿のスタンスを捉え、集約することで、運用できる問題である。
デジタルメディアにおける人的コミュニケーションの時間的進化と計算言語学の交わりについて検討する。
論文 参考訳(メタデータ) (2021-09-01T16:28:24Z) - Encoding Heterogeneous Social and Political Context for Entity Stance
Prediction [7.477393857078695]
本稿では,エンティティスタンス予測の新しい課題を提案する。
我々は、現代アメリカの政治に関する社会団体に関する事実をウィキペディアから回収する。
そして、我々は、ドメインの専門家の助けを借りて、政治イデオロギーに対する社会団体のスタンスに注釈を付ける。
論文 参考訳(メタデータ) (2021-08-09T08:59:43Z) - Over a Decade of Social Opinion Mining [1.0152838128195467]
この体系的なレビューは、社会オピニオン鉱業の進化する研究領域に焦点を当てている。
自然言語は、人間によって表現されるように、異なる意見次元の観点で理解することができる。
今後の研究の方向性が提示される一方、さらなる研究と開発は、より広範な学術的・社会的影響を残す可能性がある。
論文 参考訳(メタデータ) (2020-12-05T17:59:59Z) - Stance Detection in Web and Social Media: A Comparative Study [3.937145867005019]
オンラインフォーラムやソーシャルメディアプラットフォームは、異なる人々が異なる姿勢をとるさまざまな極性に関するトピックを議論するために、ますます利用されています。
テキストからの自動姿勢検出のためのいくつかの手法が文献で提案されている。
我々の知る限りでは、それらとその比較パフォーマンスについて、体系的な調査は行われていない。
論文 参考訳(メタデータ) (2020-07-12T12:39:35Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。