論文の概要: Variational Quantum Reinforcement Learning via Evolutionary Optimization
- arxiv url: http://arxiv.org/abs/2109.00540v1
- Date: Wed, 1 Sep 2021 16:36:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-03 13:58:23.433707
- Title: Variational Quantum Reinforcement Learning via Evolutionary Optimization
- Title(参考訳): 進化最適化による変分量子強化学習
- Authors: Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing, Hsi-Sheng Goan,
Ying-Jer Kao
- Abstract要約: グラデーションフリーな進化最適化を用いた深部量子RLタスクの2つのフレームワークを提案する。
本稿では,量子RLエージェントにTN-VQCアーキテクチャを組み込んだハイブリッドフレームワークを提案する。
これにより、147次元の入力でMiniGrid環境で量子RLを実行することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advance in classical reinforcement learning (RL) and quantum
computation (QC) points to a promising direction of performing RL on a quantum
computer. However, potential applications in quantum RL are limited by the
number of qubits available in the modern quantum devices. Here we present two
frameworks of deep quantum RL tasks using a gradient-free evolution
optimization: First, we apply the amplitude encoding scheme to the Cart-Pole
problem; Second, we propose a hybrid framework where the quantum RL agents are
equipped with hybrid tensor network-variational quantum circuit (TN-VQC)
architecture to handle inputs with dimensions exceeding the number of qubits.
This allows us to perform quantum RL on the MiniGrid environment with
147-dimensional inputs. We demonstrate the quantum advantage of parameter
saving using the amplitude encoding. The hybrid TN-VQC architecture provides a
natural way to perform efficient compression of the input dimension, enabling
further quantum RL applications on noisy intermediate-scale quantum devices.
- Abstract(参考訳): 古典的強化学習(RL)と量子計算(QC)の最近の進歩は、量子コンピュータ上でRLを実行するための有望な方向を示している。
しかし、量子RLの潜在的な応用は、現代の量子デバイスで利用可能な量子ビットの数によって制限される。
ここでは、勾配のない進化最適化を用いて、ディープ量子RLタスクの2つのフレームワークを提案する: 第一に、振幅符号化スキームをカートポール問題に適用し、第二に、量子RLエージェントが、量子ビット数を超える次元の入力を処理するために、ハイブリッドテンソルネットワーク偏差量子回路(TN-VQC)アーキテクチャを備えるハイブリッドフレームワークを提案する。
これにより、147次元の入力を持つミニグリッド環境で量子rlを実行できる。
振幅符号化を用いたパラメータ保存の量子的利点を示す。
ハイブリッドTN-VQCアーキテクチャは、入力次元の効率的な圧縮を行う自然な方法を提供する。
関連論文リスト
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Assisted quantum simulation of open quantum systems [0.0]
NISQ技術を用いてUQAの回路深さを低減する量子支援量子アルゴリズムを導入する。
オープン量子システムをシミュレーションするための量子支援量子アルゴリズムを2つ提案する。
論文 参考訳(メタデータ) (2023-02-26T11:41:02Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Quantum Neuron with Separable-State Encoding [0.0]
現在利用可能な量子プロセッサにおいて、高度な量子ニューロンモデルを大規模にテストすることは、まだ不可能である。
マルチキュービットゲート数を削減した量子パーセプトロン(QP)モデルを提案する。
シミュレーション量子コンピュータにおいて,QPの量子ビットバージョンをいくつか実装することにより,提案モデルの性能を実証する。
論文 参考訳(メタデータ) (2022-02-16T19:26:23Z) - Natural parameterized quantum circuit [0.0]
ユークリッド量子幾何で初期化できる自然パラメータ化量子回路(NPQC)を導入する。
一般的な量子回路のクラスでは、NPQC は最小の量子クラム・ラオ境界を持つ。
私たちの結果は、現在利用可能な量子プロセッサを強化するために利用できます。
論文 参考訳(メタデータ) (2021-07-29T14:54:04Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。