論文の概要: Neural News Recommendation with Collaborative News Encoding and
Structural User Encoding
- arxiv url: http://arxiv.org/abs/2109.00750v1
- Date: Thu, 2 Sep 2021 07:16:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-03 23:42:36.812909
- Title: Neural News Recommendation with Collaborative News Encoding and
Structural User Encoding
- Title(参考訳): 協調型ニュースエンコーディングと構造的ユーザエンコーディングを用いたニューラルニューズレコメンデーション
- Authors: Zhiming Mao, Xingshan Zeng, Kam-Fai Wong
- Abstract要約: 協調ニュースエンコーディング(CNE)と構造化ユーザエンコーディング(SUE)からなるニュースレコメンデーションフレームワークを提案する。
MINDデータセットの実験結果から,提案モデルの有効性を検証し,ニュースレコメンデーションの性能を向上させる。
- 参考スコア(独自算出の注目度): 18.407727437603178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic news recommendation has gained much attention from the academic
community and industry. Recent studies reveal that the key to this task lies
within the effective representation learning of both news and users. Existing
works typically encode news title and content separately while neglecting their
semantic interaction, which is inadequate for news text comprehension. Besides,
previous models encode user browsing history without leveraging the structural
correlation of user browsed news to reflect user interests explicitly. In this
work, we propose a news recommendation framework consisting of collaborative
news encoding (CNE) and structural user encoding (SUE) to enhance news and user
representation learning. CNE equipped with bidirectional LSTMs encodes news
title and content collaboratively with cross-selection and cross-attention
modules to learn semantic-interactive news representations. SUE utilizes graph
convolutional networks to extract cluster-structural features of user history,
followed by intra-cluster and inter-cluster attention modules to learn
hierarchical user interest representations. Experiment results on the MIND
dataset validate the effectiveness of our model to improve the performance of
news recommendation. Our code is released at
https://github.com/Veason-silverbullet/NNR.
- Abstract(参考訳): 自動ニュースレコメンデーションは、学術コミュニティや業界から多くの注目を集めている。
最近の研究により、このタスクの鍵はニュースとユーザーの効果的な表現学習にあることが判明した。
既存の作品は通常、ニュースタイトルとコンテンツを別々にエンコードするが、意味的な相互作用は無視する。
さらに、以前のモデルでは、ユーザーが閲覧したニュースの構造的相関を利用してユーザーの興味を明示的に反映することなく、ユーザーのブラウジング履歴をエンコードしている。
本研究では,協調ニュース符号化(CNE)と構造化ユーザ符号化(SUE)を組み合わせたニュース推薦フレームワークを提案する。
双方向LSTMを備えたCNEは、ニュースタイトルとコンテンツを横断選択モジュールと協調的に符号化し、セマンティック・インタラクティブなニュース表現を学習する。
SUEは、グラフ畳み込みネットワークを用いて、ユーザ履歴のクラスタ構造の特徴を抽出し、続いてクラスタ内およびクラスタ間アテンションモジュールを使用して階層的なユーザ関心表現を学習する。
MINDデータセットの実験結果から,提案モデルの有効性を検証し,ニュースレコメンデーションの性能を向上させる。
私たちのコードはhttps://github.com/veason-silverbullet/nnrでリリースしています。
関連論文リスト
- GLoCIM: Global-view Long Chain Interest Modeling for news recommendation [59.3925442282951]
候補者のニュース記事をユーザーに正確に推薦することは、常にニュースレコメンデーションシステムの中核的な課題である。
近年の取り組みは、全ユーザのクリックニュースシーケンスによって構築されたグローバルなクリックグラフにおいて、局所的なサブグラフ情報を抽出することに集中している。
本稿では,Global-view Long Chain Interests Modeling for News recommendation (GLoCIM)を提案する。
論文 参考訳(メタデータ) (2024-08-01T18:17:25Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - SCStory: Self-supervised and Continual Online Story Discovery [53.72745249384159]
SCStoryは、素早く公開されたニュース記事ストリームを人間のアノテーションなしでリアルタイムで消化するのに役立つ。
SCStoryは、ニュース記事ストリームのストーリー指向適応モデリングという新しいアイデアを取り入れて、自己指導的かつ継続的な学習を取り入れている。
論文 参考訳(メタデータ) (2023-11-27T04:50:01Z) - Dual Intent Enhanced Graph Neural Network for Session-based New Item
Recommendation [74.81561396321712]
セッションベースレコメンデーションのためのデュアルインテント拡張グラフニューラルネットワークを提案する。
我々は,注意機構と履歴データの分布からユーザ意図を学習する。
対応する項目のレコメンデーションスコアを含む新項目確率を出力することにより、より高いスコアを持つ新項目をユーザに推奨する。
論文 参考訳(メタデータ) (2023-05-10T02:42:12Z) - Focus! Relevant and Sufficient Context Selection for News Image
Captioning [69.36678144800936]
News Image Captioningは、ニュース記事から追加のコンテキストを活用することで、画像を記述する必要がある。
本稿では,事前学習された視覚・言語検索モデルであるCLIPを用いて,ニュース記事中の視覚的根拠を持つエンティティをローカライズすることを提案する。
我々の実験は、記事からより良いコンテキストを選択するだけで、既存のモデルの性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2022-12-01T20:00:27Z) - VLSNR:Vision-Linguistics Coordination Time Sequence-aware News
Recommendation [0.0]
マルチモーダルセマンティクスは、ユーザの時間的および長期的関心の理解を高めるのに有用である。
本研究では,視覚言語による時系列ニュースレコメンデーションを提案する。
また,大規模なマルチモーダルニュースレコメンデーションデータセットV-MINDを構築した。
論文 参考訳(メタデータ) (2022-10-06T14:27:37Z) - IGNiteR: News Recommendation in Microblogging Applications (Extended
Version) [3.2108350580418166]
我々は、インフルエンスグラフニュースレコメンダ(IGNiteR)と呼ばれる、拡散と影響を意識したディープラーニングに基づくアプローチを提案する。
このニュースを表現するために、マルチレベルアテンションベースのエンコーダを使用して、ユーザの異なる関心事を明らかにする。
実世界の2つのデータセットに対して広範な実験を行い、IGNiteRが最先端のディープラーニングベースのニュースレコメンデーション手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-10-04T22:33:58Z) - Neural News Recommendation with Event Extraction [0.0]
オンラインニュースレコメンデーションの重要な課題は、ユーザーが興味のある記事を見つけるのを助けることだ。
従来のニュースレコメンデーション手法では、ニュースやユーザ表現をエンコードするには不十分な単一ニュース情報を使用することが多い。
本稿では,これらの欠点を克服するためのイベント抽出に基づくニュースレコメンデーションフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-09T11:56:38Z) - Aspect-driven User Preference and News Representation Learning for News
Recommendation [9.187076140490902]
ニュースレコメンダシステムは、通常、ユーザーのトピックレベルの表現とレコメンデーションのためのニュースを学習する。
本稿では,アスペクトレベルのユーザ嗜好とニュース表現学習に基づく,アスペクト駆動型ニューズレコメンダシステム(ANRS)を提案する。
論文 参考訳(メタデータ) (2021-10-12T07:38:54Z) - Adversarial Active Learning based Heterogeneous Graph Neural Network for
Fake News Detection [18.847254074201953]
新規な偽ニュース検出フレームワークであるAdversarial Active Learning-based Heterogeneous Graph Neural Network(AA-HGNN)を提案する。
AA-HGNNは、特にラベル付きデータのあいまいさに直面している場合、学習性能を高めるためにアクティブな学習フレームワークを利用する。
2つの実世界のフェイクニュースデータセットによる実験により、我々のモデルはテキストベースのモデルや他のグラフベースのモデルより優れていることが示された。
論文 参考訳(メタデータ) (2021-01-27T05:05:25Z) - Graph Enhanced Representation Learning for News Recommendation [85.3295446374509]
本稿では,ユーザとニュースの表現学習を強化するニューズレコメンデーション手法を提案する。
本手法では,歴史的ユーザクリック行動から構築した二部グラフのノードとして,ユーザとニュースをみなす。
論文 参考訳(メタデータ) (2020-03-31T15:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。