Transfer of Pretrained Model Weights Substantially Improves
Semi-Supervised Image Classification
- URL: http://arxiv.org/abs/2109.00788v1
- Date: Thu, 2 Sep 2021 08:58:34 GMT
- Title: Transfer of Pretrained Model Weights Substantially Improves
Semi-Supervised Image Classification
- Authors: Attaullah Sahito, Eibe Frank, and Bernhard Pfahringer
- Abstract summary: Deep neural networks produce state-of-the-art results when trained on a large number of labeled examples.
Deep neural networks tend to overfit when small amounts of labeled examples are used for training.
We show that transfer learning always substantially improves the model's accuracy when few labeled examples are available.
- Score: 3.492636597449942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks produce state-of-the-art results when trained on a large
number of labeled examples but tend to overfit when small amounts of labeled
examples are used for training. Creating a large number of labeled examples
requires considerable resources, time, and effort. If labeling new data is not
feasible, so-called semi-supervised learning can achieve better generalisation
than purely supervised learning by employing unlabeled instances as well as
labeled ones. The work presented in this paper is motivated by the observation
that transfer learning provides the opportunity to potentially further improve
performance by exploiting models pretrained on a similar domain. More
specifically, we explore the use of transfer learning when performing
semi-supervised learning using self-learning. The main contribution is an
empirical evaluation of transfer learning using different combinations of
similarity metric learning methods and label propagation algorithms in
semi-supervised learning. We find that transfer learning always substantially
improves the model's accuracy when few labeled examples are available,
regardless of the type of loss used for training the neural network. This
finding is obtained by performing extensive experiments on the SVHN, CIFAR10,
and Plant Village image classification datasets and applying pretrained weights
from Imagenet for transfer learning.
Related papers
- Premonition: Using Generative Models to Preempt Future Data Changes in
Continual Learning [63.850451635362425]
Continual learning requires a model to adapt to ongoing changes in the data distribution.
We show that the combination of a large language model and an image generation model can similarly provide useful premonitions.
We find that the backbone of our pre-trained networks can learn representations useful for the downstream continual learning problem.
arXiv Detail & Related papers (2024-03-12T06:29:54Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
This paper presents a new curriculum learning approach for the efficient training of visual backbones (e.g., vision Transformers)
As an off-the-shelf method, it reduces the wall-time training cost of a wide variety of popular models by >1.5x on ImageNet-1K/22K without sacrificing accuracy.
arXiv Detail & Related papers (2022-11-17T17:38:55Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - Few-shot Transfer Learning for Holographic Image Reconstruction using a
Recurrent Neural Network [0.30586855806896046]
We show a few-shot transfer learning method that helps a holographic image reconstruction deep neural network rapidly generalize to new types of samples using small datasets.
We validated the effectiveness of this approach by successfully generalizing to new types of samples using small holographic datasets for training.
arXiv Detail & Related papers (2022-01-27T05:51:36Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z) - A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks [1.1802674324027231]
Self-supervised pre-training for transfer learning is becoming an increasingly popular technique to improve state-of-the-art results using unlabeled data.
We provide an overview of the taxonomy for self-supervised learning and transfer learning, and highlight some prominent methods for designing pre-training tasks across different domains.
arXiv Detail & Related papers (2020-07-01T22:55:48Z) - Minimax Lower Bounds for Transfer Learning with Linear and One-hidden
Layer Neural Networks [27.44348371795822]
We develop a statistical minimax framework to characterize the limits of transfer learning.
We derive a lower-bound for the target generalization error achievable by any algorithm as a function of the number of labeled source and target data.
arXiv Detail & Related papers (2020-06-16T22:49:26Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - The Utility of Feature Reuse: Transfer Learning in Data-Starved Regimes [6.419457653976053]
We describe a transfer learning use case for a domain with a data-starved regime.
We evaluate the effectiveness of convolutional feature extraction and fine-tuning.
We conclude that transfer learning enhances the performance of CNN architectures in data-starved regimes.
arXiv Detail & Related papers (2020-02-29T18:48:58Z) - Inter- and Intra-domain Knowledge Transfer for Related Tasks in Deep
Character Recognition [2.320417845168326]
Pre-training a deep neural network on the ImageNet dataset is a common practice for training deep learning models.
The technique of pre-training on one task and then retraining on a new one is called transfer learning.
In this paper we analyse the effectiveness of using deep transfer learning for character recognition tasks.
arXiv Detail & Related papers (2020-01-02T14:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.