論文の概要: Habitual and Reflective Control in Hierarchical Predictive Coding
- arxiv url: http://arxiv.org/abs/2109.00866v1
- Date: Thu, 2 Sep 2021 12:29:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-03 13:47:38.268438
- Title: Habitual and Reflective Control in Hierarchical Predictive Coding
- Title(参考訳): 階層型予測符号化における軌道制御と反射制御
- Authors: Paul F. Kinghorn, Beren Millidge and Christopher L. Buckley
- Abstract要約: 階層型予測符号化は,多層ネットワーク上で動作する連続体として,両方の振る舞いを説明できると主張している。
HPCは階層的に学習を分散することができ、高い層が必要に応じてのみ使用されることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In cognitive science, behaviour is often separated into two types. Reflexive
control is habitual and immediate, whereas reflective is deliberative and time
consuming. We examine the argument that Hierarchical Predictive Coding (HPC)
can explain both types of behaviour as a continuum operating across a
multi-layered network, removing the need for separate circuits in the brain. On
this view, "fast" actions may be triggered using only the lower layers of the
HPC schema, whereas more deliberative actions need higher layers. We
demonstrate that HPC can distribute learning throughout its hierarchy, with
higher layers called into use only as required.
- Abstract(参考訳): 認知科学では、行動はしばしば2つのタイプに分けられる。
反射性制御は習慣的かつ即時であり、反射性は熟考的であり、時間を要する。
階層型予測符号化(HPC)は多層ネットワーク上で動作する連続体として両方の動作を説明でき、脳内の別々の回路の必要性を排除できるという議論を考察する。
この見方では、"高速"アクションはhpcスキーマの下層のみを使用して起動されるが、より慎重なアクションはより高い層を必要とする。
hpcが階層構造全体に学習を分散できることを実証し,高層層が必要に応じてのみ使用されることを実証した。
関連論文リスト
- Finding Alignments Between Interpretable Causal Variables and
Distributed Neural Representations [62.65877150123775]
因果抽象化は、説明可能な人工知能のための有望な理論的枠組みである。
既存の因果抽象法では、高レベルモデルと低レベルモデルの間のアライメントをブルートフォースで探索する必要がある。
これらの制約を克服する分散アライメントサーチ(DAS)を提案する。
論文 参考訳(メタデータ) (2023-03-05T00:57:49Z) - WLD-Reg: A Data-dependent Within-layer Diversity Regularizer [98.78384185493624]
ニューラルネットワークは、勾配に基づく最適化と共同で訓練された階層構造に配置された複数の層で構成されている。
我々は、この従来の「中間層」フィードバックを補うために、同じ層内での活性化の多様性を促進するために、追加の「中間層」フィードバックを補うことを提案する。
本稿では,提案手法が複数のタスクにおける最先端ニューラルネットワークモデルの性能を向上させることを実証した広範な実証研究を提案する。
論文 参考訳(メタデータ) (2023-01-03T20:57:22Z) - Bio-Inspired, Task-Free Continual Learning through Activity
Regularization [3.5502600490147196]
継続的学習アプローチは通常、個別のタスク境界を必要とする。
我々は神経科学からインスピレーションを得ており、忘れるのを防ぐために、スパースで重複しない神経表現が提案されている。
空間性に加えて,各層に横方向のリカレント接続を導入し,事前学習した表現をさらに保護する。
本手法は,タスク境界に関する情報を必要とせずに,弾性重み統合やシナプスインテリジェンスなどのよく知られたCL手法と類似した性能を実現する。
論文 参考訳(メタデータ) (2022-12-08T15:14:20Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
我々は,最大スパース基底予測器が不整合表現をもたらす条件を提供する新しい識別可能性の結果を証明した。
この理論的な結果から,両レベル最適化問題に基づくアンタングル表現学習の実践的アプローチを提案する。
論文 参考訳(メタデータ) (2022-11-26T21:02:09Z) - Weakly-supervised Action Localization via Hierarchical Mining [76.00021423700497]
弱教師付きアクションローカライゼーションは、ビデオレベルの分類ラベルだけで、与えられたビデオ内のアクションインスタンスを時間的にローカライズし、分類することを目的としている。
ビデオレベルおよびスニペットレベルでの階層的マイニング戦略,すなわち階層的監視と階層的一貫性マイニングを提案する。
我々は、HiM-NetがTHUMOS14とActivityNet1.3データセットの既存の手法よりも、階層的に監督と一貫性をマイニングすることで、大きなマージンを持つことを示す。
論文 参考訳(メタデータ) (2022-06-22T12:19:09Z) - Characterizing the Action-Generalization Gap in Deep Q-Learning [17.377157455292814]
一般化により、エージェントは過去の経験から学んだ知識を新しいタスクで利用できる。
実験により、Deep Q-Networks (DQN) は依然として控えめな行動一般化を達成可能であることが示された。
論文 参考訳(メタデータ) (2022-05-11T16:00:46Z) - Provable Hierarchy-Based Meta-Reinforcement Learning [50.17896588738377]
HRLをメタRL設定で解析し、下流タスクで使用するメタトレーニング中に学習者が潜在階層構造を学習する。
我々は、この自然階層の標本効率の回復を保証し、抽出可能な楽観主義に基づくアルゴリズムとともに「多様性条件」を提供する。
我々の境界は、時間的・状態的・行動的抽象化などのHRL文献に共通する概念を取り入れており、我々の設定と分析が実際にHRLの重要な特徴を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-10-18T17:56:02Z) - Learning Task Decomposition with Ordered Memory Policy Network [73.3813423684999]
OMPN(Ordered Memory Policy Network)を提案し、デモから学習することでサブタスク階層を発見する。
ompnは部分的に観測可能な環境に適用でき、高いタスク分解性能を達成できる。
私たちの視覚化は、サブタスク階層がモデルに出現できることを確認します。
論文 参考訳(メタデータ) (2021-03-19T18:13:35Z) - Hierarchically Decoupled Spatial-Temporal Contrast for Self-supervised
Video Representation Learning [6.523119805288132]
a) 学習対象を2つの対照的なサブタスクに分解し、空間的特徴と時間的特徴を強調し、(b) 階層的にそれを実行し、マルチスケールな理解を促進する。
論文 参考訳(メタデータ) (2020-11-23T08:05:39Z) - Learning Functionally Decomposed Hierarchies for Continuous Control
Tasks with Path Planning [36.050432925402845]
我々は、長い水平方向制御タスクをうまく解決する新しい階層型強化学習アーキテクチャであるHiDeを提案する。
実験により,本手法は未知のテスト環境にまたがって一般化され,学習法および非学習法と比較して3倍の地平線長に拡張可能であることが示された。
論文 参考訳(メタデータ) (2020-02-14T10:19:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。