論文の概要: Finding Alignments Between Interpretable Causal Variables and
Distributed Neural Representations
- arxiv url: http://arxiv.org/abs/2303.02536v4
- Date: Wed, 21 Feb 2024 23:23:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 19:22:44.923089
- Title: Finding Alignments Between Interpretable Causal Variables and
Distributed Neural Representations
- Title(参考訳): 解釈可能な因果変数と分散神経表現のアライメントの探索
- Authors: Atticus Geiger and Zhengxuan Wu and Christopher Potts and Thomas Icard
and Noah D. Goodman
- Abstract要約: 因果抽象化は、説明可能な人工知能のための有望な理論的枠組みである。
既存の因果抽象法では、高レベルモデルと低レベルモデルの間のアライメントをブルートフォースで探索する必要がある。
これらの制約を克服する分散アライメントサーチ(DAS)を提案する。
- 参考スコア(独自算出の注目度): 62.65877150123775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal abstraction is a promising theoretical framework for explainable
artificial intelligence that defines when an interpretable high-level causal
model is a faithful simplification of a low-level deep learning system.
However, existing causal abstraction methods have two major limitations: they
require a brute-force search over alignments between the high-level model and
the low-level one, and they presuppose that variables in the high-level model
will align with disjoint sets of neurons in the low-level one. In this paper,
we present distributed alignment search (DAS), which overcomes these
limitations. In DAS, we find the alignment between high-level and low-level
models using gradient descent rather than conducting a brute-force search, and
we allow individual neurons to play multiple distinct roles by analyzing
representations in non-standard bases-distributed representations. Our
experiments show that DAS can discover internal structure that prior approaches
miss. Overall, DAS removes previous obstacles to conducting causal abstraction
analyses and allows us to find conceptual structure in trained neural nets.
- Abstract(参考訳): 因果抽象は、解釈可能な高レベル因果モデルが低レベルのディープラーニングシステムの忠実な単純化である場合を定義する、説明可能な人工知能のための有望な理論的枠組みである。
しかし、既存の因果的抽象法には2つの大きな制限がある: それらは高レベルモデルと低レベルモデルの整合性に関するブルートフォース探索を必要とし、高レベルモデルの変数は低レベルモデルのニューロンの解離集合と整合することを前提としている。
本稿では,これらの制約を克服する分散アライメント探索(DAS)を提案する。
dasでは、ブリュートフォース探索を行うのではなく、勾配降下を用いた高レベルモデルと低レベルモデルのアライメントを見いだし、非標準基底分布表現の表現を解析することにより、個々のニューロンが複数の異なる役割を担えるようにした。
実験の結果,DASは従来のアプローチが見逃す内部構造を発見できることがわかった。
全体として、DASは因果的抽象解析の過去の障害を取り除き、訓練されたニューラルネットワークの概念構造を見つけることができる。
関連論文リスト
- Learning Causal Abstractions of Linear Structural Causal Models [18.132607344833925]
因果抽象化(Causal Abstraction)は、2つの構造因果モデルを異なるレベルの詳細で定式化するフレームワークを提供する。
線形抽象関数を持つ線形因果モデルに対する両問題に対処する。
特にAbs-LiNGAMは,学習された高レベルモデルと抽象関数によって引き起こされる制約を利用して,より大規模な低レベルモデルの回復を高速化する手法である。
論文 参考訳(メタデータ) (2024-06-01T10:42:52Z) - The twin peaks of learning neural networks [3.382017614888546]
近年の研究では、ニューラルネットワークの一般化誤差に対する二重発光現象の存在が示されている。
この現象とニューラルネットワークで表される関数の複雑さと感度の増大との関係について検討する。
論文 参考訳(メタデータ) (2024-01-23T10:09:14Z) - Causal Triplet: An Open Challenge for Intervention-centric Causal
Representation Learning [98.78136504619539]
Causal Tripletは、視覚的に複雑なシーンを特徴とする因果表現学習ベンチマークである。
この結果から,不整合表現やオブジェクト中心表現の知識によって構築されたモデルが,分散表現よりもはるかに優れていることを示す。
論文 参考訳(メタデータ) (2023-01-12T17:43:38Z) - Unifying Causal Inference and Reinforcement Learning using Higher-Order
Category Theory [4.119151469153588]
本稿では、強化学習における因果関係モデルと予測状態表現モデルの構造発見のための統一的な定式化を提案する。
具体的には、単純なオブジェクトを用いて、両方の設定で構造発見をモデル化する。
論文 参考訳(メタデータ) (2022-09-13T19:04:18Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
因果誘導における現在の視覚システムの系統的評価のための抽象因果分析データセットについて紹介する。
Blicket実験における因果発見の研究の流れに触発され、独立シナリオと介入シナリオのいずれにおいても、以下の4種類の質問で視覚的推論システムに問い合わせる。
純粋なニューラルモデルは確率レベルのパフォーマンスの下で連想戦略に向かう傾向があるのに対し、ニューロシンボリックな組み合わせは後方ブロッキングの推論に苦しむ。
論文 参考訳(メタデータ) (2021-03-26T02:42:38Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Decontextualized learning for interpretable hierarchical representations
of visual patterns [0.0]
本稿では、この問題に対処するために設計されたアルゴリズムと訓練パラダイムについて述べる。
DHRLは、小さなデータセットの制限に対処し、階層的に整理された一連の不整合を奨励する。
変分推論を用いた複雑な階層パターン解析のためのトラクタブルパスの提供に加えて、このアプローチは生成的であり、経験的および理論的アプローチと直接結合することができる。
論文 参考訳(メタデータ) (2020-08-31T14:47:55Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
ニューラルネットワークアーキテクチャの制約に基づく表現について検討する。
本稿では,いわゆるアーキテクチャ制約を満たすのに適した簡単な最適化手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T16:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。