論文の概要: BiHPF: Bilateral High-Pass Filters for Robust Deepfake Detection
- arxiv url: http://arxiv.org/abs/2109.00911v1
- Date: Mon, 16 Aug 2021 07:56:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-05 12:45:12.127928
- Title: BiHPF: Bilateral High-Pass Filters for Robust Deepfake Detection
- Title(参考訳): BiHPF:ロバストディープフェイク検出用両側高パスフィルタ
- Authors: Yonghyun Jeong, Doyeon Kim, Seungjai Min, Seongho Joe, Youngjune Gwon,
Jongwon Choi
- Abstract要約: 生成モデルの合成画像に見られる周波数レベルのアーティファクトの効果を増幅するバイラテラルハイパスフィルタ(BiHPF)を提案する。
本手法は、未確認領域でテストしても、他の最先端手法よりも優れている。
- 参考スコア(独自算出の注目度): 14.350298935747668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement in numerous generative models has a two-fold effect: a simple
and easy generation of realistic synthesized images, but also an increased risk
of malicious abuse of those images. Thus, it is important to develop a
generalized detector for synthesized images of any GAN model or object
category, including those unseen during the training phase. However, the
conventional methods heavily depend on the training settings, which cause a
dramatic decline in performance when tested with unknown domains. To resolve
the issue and obtain a generalized detection ability, we propose Bilateral
High-Pass Filters (BiHPF), which amplify the effect of the frequency-level
artifacts that are known to be found in the synthesized images of generative
models. Numerous experimental results validate that our method outperforms
other state-of-the-art methods, even when tested with unseen domains.
- Abstract(参考訳): 多くの生成モデルの進歩には、2つの効果がある: リアルな合成画像の単純で簡単な生成であるだけでなく、それらの画像が悪用されるリスクも増大する。
したがって、GANモデルやオブジェクトカテゴリの合成画像に対して、トレーニングフェーズ中に見えないものを含む一般化された検出器を開発することが重要である。
しかし、従来の手法はトレーニング設定に大きく依存しており、未知のドメインでテストすると劇的に性能が低下する。
この問題を解決するために, 生成モデルの合成画像で見られる周波数レベルのアーティファクトの効果を増幅するバイラテラルハイパスフィルタ (BiHPF) を提案する。
多数の実験結果から,未検出領域でテストした場合でも,本手法は他の最先端手法よりも優れていることが確認された。
関連論文リスト
- Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
汎用合成画像検出器 Time Step Generating (TSG) を提案する。
TSGは、事前訓練されたモデルの再構築能力、特定のデータセット、サンプリングアルゴリズムに依存していない。
我々は,提案したTSGを大規模GenImageベンチマークで検証し,精度と一般化性の両方において大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-11-17T09:39:50Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - ArtiFact: A Large-Scale Dataset with Artificial and Factual Images for
Generalizable and Robust Synthetic Image Detection [0.3779860024918729]
本稿では,実世界の障害に直面した合成画像検出器の汎用性とロバスト性を評価する。
フィルタストライド削減戦略と組み合わせたマルチクラス分類方式は,社会的プラットフォーム障害に対処する。
ICIP 2022のIEEE VIPカップチャレンジでは、テスト1で8.34%、テスト2で1.26%、テスト3で15.08%と、他のトップチームよりも大幅に優れていた。
論文 参考訳(メタデータ) (2023-02-23T12:40:36Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
本研究では,検出問題を(一級)アウト・オブ・ディストリビューション検出タスクとして形式化する,SeeABLEと呼ばれる新しいディープフェイク検出器を提案する。
SeeABLEは、新しい回帰ベースの有界コントラスト損失を使用して、乱れた顔を事前定義されたプロトタイプにプッシュする。
我々のモデルは競合する最先端の検出器よりも高い性能を示しながら、高度に一般化能力を示す。
論文 参考訳(メタデータ) (2022-11-21T09:38:30Z) - FrePGAN: Robust Deepfake Detection Using Frequency-level Perturbations [12.027711542565315]
我々は、既知のGANモデルと見えないGANモデルの両方に対してディープフェイク検出器を一般化するためのフレームワークを設計する。
本フレームワークは,実画像と区別できないような周波数レベルの摂動マップを生成する。
実験のために、GANモデル、色操作、オブジェクトカテゴリのトレーニング設定から異なる新しいテストシナリオを設計する。
論文 参考訳(メタデータ) (2022-02-07T16:45:11Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
単一画像スーパーレゾリューション (sisr) 法は, 推定劣化モデルが実画像から逸脱した場合はうまく動作しない。
本稿では, ランダムにシャッフルされたブラー, ダウンサンプリング, ノイズ劣化からなる, より複雑で実用的な劣化モデルを提案する。
論文 参考訳(メタデータ) (2021-03-25T17:40:53Z) - Camera Invariant Feature Learning for Generalized Face Anti-spoofing [95.30490139294136]
本稿では,特徴レベルの取得カメラから固有のばらつきの影響を排除したフレームワークについて述べる。
実験により、提案手法はデータセット内設定とデータセット間設定の両方でより良いパフォーマンスを達成できることが示された。
論文 参考訳(メタデータ) (2021-01-25T13:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。