Non-Hermitian topological phase transitions in superlattices and the
optical Dirac equation
- URL: http://arxiv.org/abs/2109.01325v1
- Date: Fri, 3 Sep 2021 05:50:54 GMT
- Title: Non-Hermitian topological phase transitions in superlattices and the
optical Dirac equation
- Authors: Stefano Longhi
- Abstract summary: Optical superlattices with sublattice symmetry subjected to a synthetic imaginary gauge field undergo a topological phase transition in the Bloch energy spectrum.
A simple photonic system displaying such a phase transition is discussed, which is based on light coupling in co-propagating gratings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical superlattices with sublattice symmetry subjected to a synthetic
imaginary gauge field undergo a topological phase transition in the Bloch
energy spectrum, characterized by the change of a spectral winding number. For
a narrow gap, the phase transition is of universal form and described by a
non-Hermitian Dirac equation with Lorentz-symmetry violation. A simple photonic
system displaying such a phase transition is discussed, which is based on light
coupling in co-propagating gratings.
Related papers
- Probing Topological Anderson Transition in Quasiperiodic Photonic Lattices via Chiral Displacement and Wavelength Tuning [0.0]
We report on a topological Anderson transition caused by quasiperiodic intra-cell coupling disorder in photonic Su-Schrieffer-Heeger lattices.
As the quasiperiodic strength is varied, the system exhibits a reentrant transition from a trivial phase to a topological phase.
Unlike the traditional detection of photonic topological edge modes, we measure the mean chiral displacement from the transport of light.
arXiv Detail & Related papers (2025-03-10T10:52:57Z) - Emerging Non-Hermitian Topology in a Chiral Driven-Dissipative Bose-Hubbard Model [0.0]
We introduce a driven-dissipative Bose-Hubbard chain describing coupled lossy photonic modes.
We numerically prove that the steady-state solution is stabilized by an inhomogeneous profile of the driving amplitude.
Our work shows the emergence of non-Hermitian topological phases in an interacting model that can be naturally implemented with superconducting circuits.
arXiv Detail & Related papers (2024-11-13T19:00:34Z) - Measurement-induced entanglement transition in chaotic quantum Ising chain [42.87502453001109]
We study perturbations that break the integrability and/or the symmetry of the model, as well as modifications in the measurement protocol, characterizing the resulting chaos and lack of integrability through the Dissipative Spectral Form Factor (DSFF)
We show that while the measurement-induced phase transition and its properties appear broadly insensitive to lack of integrability and breaking of the $bbZ$ symmetry, a modification of the measurement basis from the transverse to the longitudinal direction makes the phase transition disappear altogether.
arXiv Detail & Related papers (2024-07-11T17:39:29Z) - Photon correlation time-asymmetry and dynamical coherence in multichromophoric systems [44.99833362998488]
We show that time-asymmetries in the cross-correlations of photons corresponding to different polarizations can be exploited to probe quantum coherent transport mechanisms and steady-state coherence properties.
Our results put forward photon correlation asymmetry as a promising approach to investigate coherent contributions to excited-stated dynamics in molecular aggregates and other many-site quantum emitters.
arXiv Detail & Related papers (2024-04-24T21:06:01Z) - Spin Winding and Topological Nature of Transitions in Jaynes-Cummings
Model with Stark Non-linear Coupling [0.0]
We study single-qubit topological phase transitions in light-matter interactions.
Our results may provide a deeper insight for the few-body phase transitions in light-matter interactions.
arXiv Detail & Related papers (2023-08-30T18:51:55Z) - Phase transitions in non-Hermitian superlattices [0.0]
We investigate the energy spectral phase transitions arising in one-dimensional superlattices under an imaginary gauge field.
It is shown that in models displaying nearly flat bands a smooth phase transition, from quasi entirely real to complex energies, can be observed as the imaginary gauge field is increased.
arXiv Detail & Related papers (2023-04-16T06:08:38Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Topological delocalization transitions and mobility edges in the
nonreciprocal Maryland model [0.0]
Non-Hermitian effects could trigger spectrum, localization and topological phase transitions in quasiperiodic lattices.
We propose a non-Hermitian extension of the Maryland model, which forms a paradigm in the study of localization and quantum chaos.
Explicit expressions of the complex energy dispersions, phase boundaries and mobility edges are found.
arXiv Detail & Related papers (2021-08-16T15:35:52Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Symmetry-protected topological phase transitions and robust chiral order
on a tunable zigzag lattice [8.870994254107801]
We show that the setup in a zigzag optical lattice provides a perfect platform to realize symmetry-protected topological phase transitions.
By using infinite time-evolving block decimation, we obtain the phase diagram in a large parameter regions.
We find another scheme to realize the long-sought vector chiral phase, which is robust from quantum fluctuations.
arXiv Detail & Related papers (2020-11-12T18:20:24Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.