論文の概要: Thompson Sampling for Bandits with Clustered Arms
- arxiv url: http://arxiv.org/abs/2109.01656v1
- Date: Mon, 6 Sep 2021 08:58:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-07 16:32:16.131068
- Title: Thompson Sampling for Bandits with Clustered Arms
- Title(参考訳): クラスタアームを用いたバンドのトンプソンサンプリング
- Authors: Emil Carlsson, Devdatt Dubhashi, Fredrik D. Johansson
- Abstract要約: 理論的および実験的に、与えられたクラスタ構造をどのように活用すれば、後悔と計算コストを大幅に改善できるかを示す。
我々のアルゴリズムは、以前に提案されたクラスタ化された腕を持つバンディットのアルゴリズムと比較してよく機能する。
- 参考スコア(独自算出の注目度): 7.237493755167875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose algorithms based on a multi-level Thompson sampling scheme, for
the stochastic multi-armed bandit and its contextual variant with linear
expected rewards, in the setting where arms are clustered. We show, both
theoretically and empirically, how exploiting a given cluster structure can
significantly improve the regret and computational cost compared to using
standard Thompson sampling. In the case of the stochastic multi-armed bandit we
give upper bounds on the expected cumulative regret showing how it depends on
the quality of the clustering. Finally, we perform an empirical evaluation
showing that our algorithms perform well compared to previously proposed
algorithms for bandits with clustered arms.
- Abstract(参考訳): そこで本研究では,多段階トンプソンサンプリングスキームに基づくアルゴリズムを提案する。
理論上および実証的に、与えられたクラスター構造を利用すると、標準のトンプソンサンプリングを用いた場合と比較して、後悔や計算コストが著しく向上することを示した。
確率的多腕バンディットの場合、我々は、クラスタの質にどのように依存するかを示す期待累積後悔の上限を与える。
最後に,前述した群腕付きバンディットのアルゴリズムと比較して,アルゴリズムの性能が良好であることを示す経験的評価を行った。
関連論文リスト
- Neural Dueling Bandits [58.90189511247936]
ニューラルネットワークを用いて、予め選択した腕の好みフィードバックを用いて報酬関数を推定する。
次に、理論結果を二項フィードバックによる文脈的帯域幅問題に拡張し、それはそれ自体は自明な寄与ではない。
論文 参考訳(メタデータ) (2024-07-24T09:23:22Z) - Feel-Good Thompson Sampling for Contextual Dueling Bandits [49.450050682705026]
FGTS.CDBという名前のトンプソンサンプリングアルゴリズムを提案する。
われわれのアルゴリズムの核心は、デュエルバンディットに適した新しいFeel-Good探索用語である。
我々のアルゴリズムは最小限の誤差、すなわち $tildemathcalO(dsqrt T)$, $d$ はモデル次元、$T$ は時間水平線である。
論文 参考訳(メタデータ) (2024-04-09T04:45:18Z) - An Optimal Algorithm for the Real-Valued Combinatorial Pure Exploration
of Multi-Armed Bandit [65.268245109828]
多武装バンディット(R-CPE-MAB)の真価純探査問題について検討する。
既存のR-CPE-MABの手法は、いわゆるトランスダクティブ線形帯域の特殊な場合と見なすことができる。
本稿では,差分探索アルゴリズム (CombGapE) を提案する。
論文 参考訳(メタデータ) (2023-06-15T15:37:31Z) - Thompson Sampling with Virtual Helping Agents [0.0]
我々は、オンラインのシーケンシャルな意思決定の問題、すなわち、現在の知識を活用して即時パフォーマンスを最大化し、新しい情報を探索して長期的な利益を得るというトレードオフに対処する。
本稿では,マルチアームバンディット問題に対する2つのアルゴリズムを提案し,累積的後悔に関する理論的境界を提供する。
論文 参考訳(メタデータ) (2022-09-16T23:34:44Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) が提案されている。
提案アルゴリズムは,文脈的帯域幅の特別な場合において,最高のトンプソンサンプリングアルゴリズムと同じサブ線形残差を達成できることを示す。
論文 参考訳(メタデータ) (2022-06-22T17:58:23Z) - Analysis of Thompson Sampling for Partially Observable Contextual
Multi-Armed Bandits [1.8275108630751844]
我々は、部分的に観測可能なコンテキスト多重武装バンディットのためのトンプソンサンプリングアルゴリズムを提案する。
提示された政策の後悔は、時間と武器の数に応じて対数的にスケールし、寸法と直線的にスケールすることを示す。
論文 参考訳(メタデータ) (2021-10-23T08:51:49Z) - Batched Thompson Sampling for Multi-Armed Bandits [9.467098519620263]
本稿では,トンプソンサンプリングアルゴリズムを用いて,バッチ環境でのマルチアームバンディットについて検討する。
本稿では,合成データセットと実データセットの両方で実験を行い,その効果を実証する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-15T20:47:46Z) - Thompson Sampling for Unimodal Bandits [21.514495320038712]
本稿では, 半順序の腕に対して期待される報酬が一様であるアンフンモダル・バンディットに対するトンプソンサンプリングアルゴリズムを提案する。
ガウスの報酬に対して、我々のアルゴリズムの後悔は$mathcalO(log T)$であり、標準的なトンプソンサンプリングアルゴリズムよりもはるかに優れている。
論文 参考訳(メタデータ) (2021-06-15T14:40:34Z) - Bias-Robust Bayesian Optimization via Dueling Bandit [57.82422045437126]
ベイジアン最適化は、観測が逆偏りとなるような環境において考慮する。
情報指向サンプリング(IDS)に基づくダリングバンディットの新しい手法を提案する。
これにより、累積的後悔保証を伴う帯域幅の並列化のための、最初の効率的なカーネル化アルゴリズムが得られる。
論文 参考訳(メタデータ) (2021-05-25T10:08:41Z) - Distributed Thompson Sampling [22.813570532809212]
我々はMエージェントとKアームを併用した協調型マルチエージェントマルチアームバンドについて検討した。
エージェントの目標は、累積的後悔を最小限にすることである。
従来のトンプソンサンプリングアルゴリズムを分散環境下で適用する。
エージェントが協調して学習できるように,分散消去に基づくトンプソンサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-03T09:42:37Z) - The Price of Incentivizing Exploration: A Characterization via Thompson
Sampling and Sample Complexity [83.81297078039836]
インセンティブ付き探索(Incentivized Exploring)は、武器の選択を自給自足エージェントによって制御するマルチアーム・バンディットのバージョンである。
我々は、インセンティブの価格に焦点を合わせ、インセンティブの適合性のために、広く解釈された、パフォーマンスの喪失が引き起こされる。
論文 参考訳(メタデータ) (2020-02-03T04:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。