論文の概要: ALLWAS: Active Learning on Language models in WASserstein space
- arxiv url: http://arxiv.org/abs/2109.01691v1
- Date: Fri, 3 Sep 2021 18:11:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 13:18:36.057430
- Title: ALLWAS: Active Learning on Language models in WASserstein space
- Title(参考訳): ALLWAS:WASserstein空間における言語モデルのアクティブラーニング
- Authors: Anson Bastos, Manohar Kaul
- Abstract要約: 医学などのいくつかの領域では、ラベル付きトレーニングデータの不足が一般的な問題である。
アクティブな学習は、ラベルの予算が限られている場合、パフォーマンスを高めるのに役立ちます。
言語モデルにおけるアクティブ学習のためのサブモジュール最適化と最適輸送に基づくサンプリング手法を用いた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 13.35098213857704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning has emerged as a standard paradigm in areas with scarcity of
labeled training data, such as in the medical domain. Language models have
emerged as the prevalent choice of several natural language tasks due to the
performance boost offered by these models. However, in several domains, such as
medicine, the scarcity of labeled training data is a common issue. Also, these
models may not work well in cases where class imbalance is prevalent. Active
learning may prove helpful in these cases to boost the performance with a
limited label budget. To this end, we propose a novel method using sampling
techniques based on submodular optimization and optimal transport for active
learning in language models, dubbed ALLWAS. We construct a sampling strategy
based on submodular optimization of the designed objective in the gradient
domain. Furthermore, to enable learning from few samples, we propose a novel
strategy for sampling from the Wasserstein barycenters. Our empirical
evaluations on standard benchmark datasets for text classification show that
our methods perform significantly better (>20% relative increase in some cases)
than existing approaches for active learning on language models.
- Abstract(参考訳): 医療領域など,ラベル付きトレーニングデータが少ない地域では,アクティブラーニングが標準的パラダイムとして現れている。
言語モデルは、これらのモデルによって提供されるパフォーマンス向上のために、いくつかの自然言語タスクの一般的な選択として現れています。
しかし、医学などのいくつかの分野では、ラベル付きトレーニングデータの不足が問題となっている。
また、これらのモデルは、クラス不均衡が一般的である場合にはうまく機能しない。
アクティブな学習は、ラベルの予算が限られている場合、パフォーマンスを高めるのに役立ちます。
そこで本研究では,言語モデルのアクティブラーニングのためのサブモジュラー最適化と最適トランスポートに基づくサンプリング手法であるallwasを提案する。
勾配領域における設計対象のサブモジュラー最適化に基づくサンプリング戦略を構築する。
さらに,少数のサンプルからの学習を可能にするために,wasserstein barycentersからサンプリングする新しい手法を提案する。
テキスト分類のための標準ベンチマークデータセットに対する実証的な評価は、既存の言語モデルにおけるアクティブラーニング手法に比べて、我々の手法が大幅に向上していることを示している。
関連論文リスト
- ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
本稿では、事前訓練されたSSLと教師付き音声モデルを評価するための新しいベンチマークであるML-SUPERB2.0を提案する。
ML-SUPERBのセットアップよりも性能が向上するが、性能は下流モデル設計に依存している。
また、言語とデータセットのパフォーマンスに大きな違いがあることから、よりターゲットを絞ったアプローチの必要性も示唆されている。
論文 参考訳(メタデータ) (2024-06-12T21:01:26Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Multilingual Few-Shot Learning via Language Model Retrieval [18.465566186549072]
トランスフォーマーベースの言語モデルは、数ショットのインコンテキスト学習において顕著な成功を収めた。
本研究は,意味論的に類似したショットサンプルを検索し,コンテキストとして利用する研究である。
提案手法を,意図検出,質問分類,感情分析,話題分類に関連する5つの自然言語理解データセット上で評価した。
論文 参考訳(メタデータ) (2023-06-19T14:27:21Z) - An Efficient Active Learning Pipeline for Legal Text Classification [2.462514989381979]
法律分野における事前学習言語モデルを用いて,能動的学習を効果的に活用するためのパイプラインを提案する。
我々は、知識蒸留を用いてモデルの埋め込みを意味論的意味のある空間に導く。
分類タスクに適応したContract-NLIとLEDGARベンチマークの実験により,本手法が標準AL戦略より優れていることが示された。
論文 参考訳(メタデータ) (2022-11-15T13:07:02Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
本稿では,LNSR(Layerwise Noise Stability Regularization)という,新規かつ効果的な微調整フレームワークを提案する。
具体的には、標準ガウス雑音を注入し、微調整モデルの隠れ表現を正規化することを提案する。
提案手法は,L2-SP,Mixout,SMARTなど他の最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-12T04:42:49Z) - Bayesian Active Learning with Pretrained Language Models [9.161353418331245]
Active Learning (AL)は、ラベルなしデータのプールからアノテーションのためのデータを反復的に選択する手法である。
以前のALアプローチは、イテレーションごとにゼロからトレーニングされるタスク固有のモデルに制限されている。
BALM;Bayesian Active Learning with pretrained language modelを紹介します。
論文 参考訳(メタデータ) (2021-04-16T19:07:31Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
本研究では,事前学習した Transformer ベースの言語モデル BERT の微調整手法について検討する。
実験結果から,モデルの知識獲得度を最大化することで,モデル性能の優位性を示す。
我々は、微調整中の言語モデルの凍結層の利点を分析し、トレーニング可能なパラメータの数を減らす。
論文 参考訳(メタデータ) (2020-12-04T08:34:39Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Dynamic Data Selection and Weighting for Iterative Back-Translation [116.14378571769045]
本稿では,反復的バックトランスレーションモデルのためのカリキュラム学習戦略を提案する。
我々は、ドメイン適応、低リソース、高リソースMT設定に関するモデルを評価する。
実験の結果,提案手法は競争基準値よりも最大1.8 BLEU点の改善を達成できた。
論文 参考訳(メタデータ) (2020-04-07T19:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。