論文の概要: Multilingual Few-Shot Learning via Language Model Retrieval
- arxiv url: http://arxiv.org/abs/2306.10964v1
- Date: Mon, 19 Jun 2023 14:27:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 17:26:58.440715
- Title: Multilingual Few-Shot Learning via Language Model Retrieval
- Title(参考訳): 言語モデル検索による多言語マイナショット学習
- Authors: Genta Indra Winata, Liang-Kang Huang, Soumya Vadlamannati, Yash
Chandarana
- Abstract要約: トランスフォーマーベースの言語モデルは、数ショットのインコンテキスト学習において顕著な成功を収めた。
本研究は,意味論的に類似したショットサンプルを検索し,コンテキストとして利用する研究である。
提案手法を,意図検出,質問分類,感情分析,話題分類に関連する5つの自然言語理解データセット上で評価した。
- 参考スコア(独自算出の注目度): 18.465566186549072
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Transformer-based language models have achieved remarkable success in
few-shot in-context learning and drawn a lot of research interest. However,
these models' performance greatly depends on the choice of the example prompts
and also has high variability depending on how samples are chosen. In this
paper, we conduct a comprehensive study of retrieving semantically similar
few-shot samples and using them as the context, as it helps the model decide
the correct label without any gradient update in the multilingual and
cross-lingual settings. We evaluate the proposed method on five natural
language understanding datasets related to intent detection, question
classification, sentiment analysis, and topic classification. The proposed
method consistently outperforms random sampling in monolingual and
cross-lingual tasks in non-English languages.
- Abstract(参考訳): トランスフォーマティブベースの言語モデルは、数回のインコンテキスト学習で著しく成功し、多くの研究の関心を集めている。
しかし、これらのモデルの性能はサンプルプロンプトの選択に大きく依存し、サンプルの選択方法によっても高い変動性を持つ。
本稿では,意味論的に類似した複数ショットサンプルを検索し,それをコンテキストとして使用するという包括的研究を行い,多言語・言語間設定の勾配更新を伴わずに,モデルが正しいラベルを決定するのに役立てる。
提案手法を,意図検出,質問分類,感情分析,話題分類に関連する5つの自然言語理解データセット上で評価した。
提案手法は、非英語言語における単言語および言語間タスクにおけるランダムサンプリングを一貫して上回る。
関連論文リスト
- Distilling Monolingual and Crosslingual Word-in-Context Representations [18.87665111304974]
本研究では,単言語と言語間の両方の設定において,事前学習した言語モデルから文脈における単語の意味表現を除去する手法を提案する。
本手法では,事前学習したモデルのコーパスやパラメータの更新は不要である。
本手法は,事前学習したモデルの異なる隠れ層の出力を自己注意を用いて組み合わせることから学習する。
論文 参考訳(メタデータ) (2024-09-13T11:10:16Z) - Synergistic Approach for Simultaneous Optimization of Monolingual, Cross-lingual, and Multilingual Information Retrieval [5.446052898856584]
本稿では,モノリンガル,クロスリンガル,マルチリンガル設定におけるゼロショット検索性能を改善するためのハイブリッドバッチ学習手法を提案する。
このアプローチは、データセットサイズに基づいてサンプリングされたモノリンガルとクロスリンガルの問合せ対のバッチを混合したマルチリンガル言語モデルを微調整する。
論文 参考訳(メタデータ) (2024-08-20T04:30:26Z) - Multilingual and Multi-topical Benchmark of Fine-tuned Language models and Large Language Models for Check-Worthy Claim Detection [1.4779899760345434]
本研究では,(1)微調整言語モデルと(2)チェック価値のあるクレーム検出タスクにおける大規模言語モデルの性能を比較した。
様々なソースやスタイルのテキストからなる多言語・多言語データセットを構築した。
論文 参考訳(メタデータ) (2023-11-10T15:36:35Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
我々は、非英語言語における多言語分類を行う際に、GPTモデルとT5モデルの多言語的スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できることが示されている。
論文 参考訳(メタデータ) (2021-09-16T03:08:22Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Towards Zero-Shot Multilingual Synthetic Question and Answer Generation
for Cross-Lingual Reading Comprehension [20.570539023748424]
本稿では,多言語質問と解答ペアを大規模に生成する簡単な方法を提案する。
これらの合成サンプルは、ターゲット言語上の多言語QAモデルのゼロショット性能を改善するために使用できる。
論文 参考訳(メタデータ) (2020-10-22T19:59:37Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
言語間TRansfer Evaluation of Multilinguals XTREMEは、40言語および9タスクにわたる多言語表現の言語間一般化能力を評価するためのベンチマークである。
我々は、英語でテストされたモデルは、多くのタスクにおいて人間のパフォーマンスに達するが、言語間変換されたモデルの性能にはまだ大きなギャップがあることを示した。
論文 参考訳(メタデータ) (2020-03-24T19:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。