論文の概要: Estimating the probabilities of causation via deep monotonic twin
networks
- arxiv url: http://arxiv.org/abs/2109.01904v2
- Date: Tue, 7 Sep 2021 08:19:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 12:29:31.572743
- Title: Estimating the probabilities of causation via deep monotonic twin
networks
- Title(参考訳): 深い単調双対ネットワークによる因果関係の確率の推定
- Authors: Athanasios Vlontzos, Bernhard Kainz, Ciaran M. Gilligan-Lee
- Abstract要約: 本稿では,2つのネットワーク対実数推定をディープラーニングを用いて実装し,対実数クエリを推定する方法を示す。
トレーニング中、既知の識別可能性の制約をどのように強制するかを示し、各対実的なクエリに対する応答が一意に決定されるようにする。
- 参考スコア(独自算出の注目度): 3.5953798597797673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been much recent work using machine learning to answer causal
queries. Most focus on interventional queries, such as the conditional average
treatment effect. However, as noted by Pearl, interventional queries only form
part of a larger hierarchy of causal queries, with counterfactuals sitting at
the top. Despite this, our community has not fully succeeded in adapting
machine learning tools to answer counterfactual queries. This work addresses
this challenge by showing how to implement twin network counterfactual
inference -- an alternative to abduction, action, & prediction counterfactual
inference -- with deep learning to estimate counterfactual queries. We show how
the graphical nature of twin networks makes them particularly amenable to deep
learning, yielding simple neural network architectures that, when trained, are
capable of counterfactual inference. Importantly, we show how to enforce known
identifiability constraints during training, ensuring the answer to each
counterfactual query is uniquely determined. We demonstrate our approach by
using it to accurately estimate the probabilities of causation -- important
counterfactual queries that quantify the degree to which one event was a
necessary or sufficient cause of another -- on both synthetic and real data.
- Abstract(参考訳): 因果的クエリに機械学習を使って答える作業は、近年数多く行われている。
ほとんどは、条件付き平均治療効果のような介入的問合せに焦点を当てている。
しかし、Pearl氏が指摘するように、介入クエリは因果クエリのより大きな階層の一部に過ぎず、反ファクトが上部にある。
それにもかかわらず、私たちのコミュニティは、偽のクエリに機械学習ツールを適用することには成功していません。
この研究は、反事実クエリを推定するためのディープラーニングを用いて、アブダクション、アクション、予測の代替であるツインネットワークの反事実推論(twin network counterfactual inference)の実装方法を示すことによって、この課題に対処します。
我々は、ツインネットワークのグラフィカルな性質によって、特にディープラーニングに順応しやすくなり、訓練された場合、反実的推論が可能な単純なニューラルネットワークアーキテクチャが得られることを示す。
重要なことは、トレーニング中に既知の識別可能性の制約をどのように強制するかを示し、各カウンターファクトクエリに対する応答が一意に決定されるようにすることである。
合成データと実データの両方において、ある事象が他の事象の必要または十分な原因である程度を定量化する重要な反事実クエリーである因果関係の確率を正確に推定することで、このアプローチを実証する。
関連論文リスト
- Query2Triple: Unified Query Encoding for Answering Diverse Complex
Queries over Knowledge Graphs [29.863085746761556]
単純で複雑なクエリのトレーニングを分離する新しいアプローチであるQuery to Triple (Q2T)を提案する。
提案するQ2Tは, トレーニングだけでなく, モジュール性にも優れ, 様々なニューラルネットワーク予測器に容易に適応できる。
論文 参考訳(メタデータ) (2023-10-17T13:13:30Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
本稿では,証明可能な推論能力を備えた複雑なクエリを用いたエンドツーエンド学習を支援するニューラルシンボリック手法を提案する。
これまでに検討されていない10種類の新しいクエリを含む新しいデータセットを開発する。
提案手法は,新しいデータセットにおいて先行手法を著しく上回り,既存データセットにおける先行手法を同時に上回っている。
論文 参考訳(メタデータ) (2023-04-14T11:35:35Z) - Neural-Symbolic Entangled Framework for Complex Query Answering [22.663509971491138]
複雑な問合せ応答のためのニューラル・アンド・エンタングルド・フレームワーク(ENeSy)を提案する。
これにより、ニューラルネットワークとシンボリック推論が互いに強化され、カスケードエラーとKGの不完全性が軽減される。
ENeSyは、特にリンク予測タスクのみでトレーニングモデルの設定において、いくつかのベンチマークでSOTA性能を達成する。
論文 参考訳(メタデータ) (2022-09-19T06:07:10Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
本研究は,アクションクエリを備えたエンコーダ・デコーダフレームワークを用いて,時間的行動検出(TAD)の進展を図ることを目的とする。
まず,デコーダ内の関係注意機構を提案し,その関係に基づいてクエリ間の関心を誘導する。
最後に、高品質なクエリを区別するために、推論時に各アクションクエリのローカライズ品質を予測することを提案する。
論文 参考訳(メタデータ) (2022-07-14T17:46:37Z) - Nested Counterfactual Identification from Arbitrary Surrogate
Experiments [95.48089725859298]
観測と実験の任意の組み合わせからネスト反事実の同定について検討した。
具体的には、任意のネストされた反事実を非ネストされたものへ写像できる反ファクト的非ネスト定理(英語版)(CUT)を証明する。
論文 参考訳(メタデータ) (2021-07-07T12:51:04Z) - Logically Consistent Loss for Visual Question Answering [66.83963844316561]
ニューラルネットワークに基づく視覚質問応答(VQA)の現在の進歩は、同じ分布(すなわち、d)の仮定による一貫性を保証することができない。
マルチタスク学習フレームワークにおける論理的一貫した損失を定式化することにより,この問題に対処するための新しいモデルに依存しない論理制約を提案する。
実験により、提案された損失公式とハイブリッドバッチの導入により、一貫性が向上し、性能が向上することを確認した。
論文 参考訳(メタデータ) (2020-11-19T20:31:05Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。