Spiking Neural Networks with Improved Inherent Recurrence Dynamics for
Sequential Learning
- URL: http://arxiv.org/abs/2109.01905v1
- Date: Sat, 4 Sep 2021 17:13:28 GMT
- Title: Spiking Neural Networks with Improved Inherent Recurrence Dynamics for
Sequential Learning
- Authors: Wachirawit Ponghiran and Kaushik Roy
- Abstract summary: Spiking neural networks (SNNs) with leaky integrate and fire (LIF) neurons can be operated in an event-driven manner.
We show that SNNs can be trained for sequential tasks and propose modifications to a network of LIF neurons.
We then develop a training scheme to train the proposed SNNs with improved inherent recurrence dynamics.
- Score: 6.417011237981518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) with leaky integrate and fire (LIF) neurons,
can be operated in an event-driven manner and have internal states to retain
information over time, providing opportunities for energy-efficient
neuromorphic computing, especially on edge devices. Note, however, many
representative works on SNNs do not fully demonstrate the usefulness of their
inherent recurrence (membrane potentials retaining information about the past)
for sequential learning. Most of the works train SNNs to recognize static
images by artificially expanded input representation in time through rate
coding. We show that SNNs can be trained for sequential tasks and propose
modifications to a network of LIF neurons that enable internal states to learn
long sequences and make their inherent recurrence resilient to the vanishing
gradient problem. We then develop a training scheme to train the proposed SNNs
with improved inherent recurrence dynamics. Our training scheme allows spiking
neurons to produce multi-bit outputs (as opposed to binary spikes) which help
mitigate the mismatch between a derivative of spiking neurons' activation
function and a surrogate derivative used to overcome spiking neurons'
non-differentiability. Our experimental results indicate that the proposed SNN
architecture on TIMIT and LibriSpeech 100h dataset yields accuracy comparable
to that of LSTMs (within 1.10% and 0.36%, respectively), but with 2x fewer
parameters than LSTMs. The sparse SNN outputs also lead to 10.13x and 11.14x
savings in multiplication operations compared to GRUs, which is generally
con-sidered as a lightweight alternative to LSTMs, on TIMIT and LibriSpeech
100h datasets, respectively.
Related papers
- CLIF: Complementary Leaky Integrate-and-Fire Neuron for Spiking Neural Networks [5.587069105667678]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
It remains a challenge to train SNNs due to their undifferentiable spiking mechanism.
We propose Leaky Integrate-and-Fire Neuron-based SNNs and Complementary Leaky Integrate-and-Fire Neuron.
arXiv Detail & Related papers (2024-02-07T08:51:57Z) - Co-learning synaptic delays, weights and adaptation in spiking neural
networks [0.0]
Spiking neural networks (SNN) distinguish themselves from artificial neural networks (ANN) because of their inherent temporal processing and spike-based computations.
We show that data processing with spiking neurons can be enhanced by co-learning the connection weights with two other biologically inspired neuronal features.
arXiv Detail & Related papers (2023-09-12T09:13:26Z) - Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons [1.7056768055368383]
Spiking neural networks (SNN) are able to learn features while using less energy, especially on neuromorphic hardware.
Most widely used neuron in deep learning is the temporal and Fire (LIF) neuron.
arXiv Detail & Related papers (2023-06-22T04:25:27Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
It is hard to train biologically-inspired spiking neural networks (SNNs) than artificial neural networks (ANNs)
We show that training deep SNN models achieves the exact same performance as that of ANNs.
Our SNN accomplishes high-performance classification with less than 0.3 spikes per neuron, lending itself for an energy-efficient implementation.
arXiv Detail & Related papers (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models for energy-efficient applications on neuromorphic hardware.
We study spike-based implicit differentiation on the equilibrium state (SPIDE) that extends the recently proposed training method.
arXiv Detail & Related papers (2023-02-01T04:22:59Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Skip-Connected Self-Recurrent Spiking Neural Networks with Joint
Intrinsic Parameter and Synaptic Weight Training [14.992756670960008]
We propose a new type of RSNN called Skip-Connected Self-Recurrent SNNs (ScSr-SNNs)
ScSr-SNNs can boost performance by up to 2.55% compared with other types of RSNNs trained by state-of-the-art BP methods.
arXiv Detail & Related papers (2020-10-23T22:27:13Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.