CLIF: Complementary Leaky Integrate-and-Fire Neuron for Spiking Neural Networks
- URL: http://arxiv.org/abs/2402.04663v4
- Date: Mon, 15 Jul 2024 03:01:03 GMT
- Title: CLIF: Complementary Leaky Integrate-and-Fire Neuron for Spiking Neural Networks
- Authors: Yulong Huang, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue Zhou, Zunchang Liu, Biao Pan, Bojun Cheng,
- Abstract summary: Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
It remains a challenge to train SNNs due to their undifferentiable spiking mechanism.
We propose Leaky Integrate-and-Fire Neuron-based SNNs and Complementary Leaky Integrate-and-Fire Neuron.
- Score: 5.587069105667678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models. Compared to conventional deep Artificial Neural Networks (ANNs), SNNs exhibit superior efficiency and capability to process temporal information. However, it remains a challenge to train SNNs due to their undifferentiable spiking mechanism. The surrogate gradients method is commonly used to train SNNs, but often comes with an accuracy disadvantage over ANNs counterpart. We link the degraded accuracy to the vanishing of gradient on the temporal dimension through the analytical and experimental study of the training process of Leaky Integrate-and-Fire (LIF) Neuron-based SNNs. Moreover, we propose the Complementary Leaky Integrate-and-Fire (CLIF) Neuron. CLIF creates extra paths to facilitate the backpropagation in computing temporal gradient while keeping binary output. CLIF is hyperparameter-free and features broad applicability. Extensive experiments on a variety of datasets demonstrate CLIF's clear performance advantage over other neuron models. Furthermore, the CLIF's performance even slightly surpasses superior ANNs with identical network structure and training conditions. The code is available at https://github.com/HuuYuLong/Complementary-LIF.
Related papers
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - BKDSNN: Enhancing the Performance of Learning-based Spiking Neural Networks Training with Blurred Knowledge Distillation [20.34272550256856]
Spiking neural networks (SNNs) mimic biological neural system to convey information via discrete spikes.
Our work achieves state-of-the-art performance for training SNNs on both static and neuromorphic datasets.
arXiv Detail & Related papers (2024-07-12T08:17:24Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
It is hard to train biologically-inspired spiking neural networks (SNNs) than artificial neural networks (ANNs)
We show that training deep SNN models achieves the exact same performance as that of ANNs.
Our SNN accomplishes high-performance classification with less than 0.3 spikes per neuron, lending itself for an energy-efficient implementation.
arXiv Detail & Related papers (2023-06-14T21:01:35Z) - KLIF: An optimized spiking neuron unit for tuning surrogate gradient
slope and membrane potential [0.0]
Spiking neural networks (SNNs) have attracted much attention due to their ability to process temporal information.
It is still challenging to develop efficient and high-performing learning algorithms for SNNs.
We propose a novel k-based leaky Integrate-and-Fire neuron model to improve the learning ability of SNNs.
arXiv Detail & Related papers (2023-02-18T05:18:18Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models for energy-efficient applications on neuromorphic hardware.
We study spike-based implicit differentiation on the equilibrium state (SPIDE) that extends the recently proposed training method.
arXiv Detail & Related papers (2023-02-01T04:22:59Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Spiking Neural Networks with Improved Inherent Recurrence Dynamics for
Sequential Learning [6.417011237981518]
Spiking neural networks (SNNs) with leaky integrate and fire (LIF) neurons can be operated in an event-driven manner.
We show that SNNs can be trained for sequential tasks and propose modifications to a network of LIF neurons.
We then develop a training scheme to train the proposed SNNs with improved inherent recurrence dynamics.
arXiv Detail & Related papers (2021-09-04T17:13:28Z) - Sparse Spiking Gradient Descent [2.741266294612776]
We present the first sparse SNN backpropagation algorithm which achieves the same or better accuracy as current state of the art methods.
We show the effectiveness of our method on real datasets of varying complexity.
arXiv Detail & Related papers (2021-05-18T20:00:55Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.