Identification of Driver Phone Usage Violations via State-of-the-Art
Object Detection with Tracking
- URL: http://arxiv.org/abs/2109.02119v2
- Date: Tue, 7 Sep 2021 09:55:01 GMT
- Title: Identification of Driver Phone Usage Violations via State-of-the-Art
Object Detection with Tracking
- Authors: Steven Carrell and Amir Atapour-Abarghouei
- Abstract summary: We propose a custom-trained state-of-the-art object detector to work with roadside cameras to capture driver phone usage without the need for human intervention.
The proposed approach also addresses the issues caused by windscreen glare and introduces the steps required to remedy this.
- Score: 8.147652597876862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of mobiles phones when driving have been a major factor when it comes
to road traffic incidents and the process of capturing such violations can be a
laborious task. Advancements in both modern object detection frameworks and
high-performance hardware has paved the way for a more automated approach when
it comes to video surveillance. In this work, we propose a custom-trained
state-of-the-art object detector to work with roadside cameras to capture
driver phone usage without the need for human intervention. The proposed
approach also addresses the issues caused by windscreen glare and introduces
the steps required to remedy this. Twelve pre-trained models are fine-tuned
with our custom dataset using four popular object detection methods: YOLO, SSD,
Faster R-CNN, and CenterNet. Out of all the object detectors tested, the YOLO
yields the highest accuracy levels of up to 96% (AP10) and frame rates of up to
~30 FPS. DeepSort object tracking algorithm is also integrated into the
best-performing model to collect records of only the unique violations, and
enable the proposed approach to count the number of vehicles. The proposed
automated system will collect the output images of the identified violations,
timestamps of each violation, and total vehicle count. Data can be accessed via
a purpose-built user interface.
Related papers
- Threat Detection In Self-Driving Vehicles Using Computer Vision [0.0]
We propose a threat detection mechanism for autonomous self-driving cars using dashcam videos.
There are four major components, namely, YOLO to identify the objects, advanced lane detection algorithm, multi regression model to measure the distance of the object from the camera.
The final accuracy of our proposed Threat Detection Model (TDM) is 82.65%.
arXiv Detail & Related papers (2022-09-06T12:01:07Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
We introduce a challenging dataset named CODA that exposes this critical problem of vision-based detectors.
The performance of standard object detectors trained on large-scale autonomous driving datasets significantly drops to no more than 12.8% in mAR.
We experiment with the state-of-the-art open-world object detector and find that it also fails to reliably identify the novel objects in CODA.
arXiv Detail & Related papers (2022-03-15T08:32:56Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
7DoF prediction of vehicles at an intersection is an important task for assessing potential conflicts between road users.
We develop an approach using a weakly supervised method of fine tuning 3D object detectors for traffic observation cameras.
Our method achieves vehicle 7DoF pose prediction accuracy on our dataset comparable to the top performing monocular 3D object detectors on autonomous vehicle datasets.
arXiv Detail & Related papers (2021-10-21T08:26:48Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
We propose an end-to-end network for joint object detection and tracking based on radar and camera sensor fusion.
Our proposed method uses a center-based radar-camera fusion algorithm for object detection and utilizes a greedy algorithm for object association.
We evaluate our method on the challenging nuScenes dataset, where it achieves 20.0 AMOTA and outperforms all vision-based 3D tracking methods in the benchmark.
arXiv Detail & Related papers (2021-07-11T23:56:53Z) - Achieving Real-Time Object Detection on MobileDevices with Neural
Pruning Search [45.20331644857981]
We propose a compiler-aware neural pruning search framework to achieve high-speed inference on autonomous vehicles for 2D and 3D object detection.
For the first time, the proposed method achieves computation (close-to) real-time, 55ms and 99ms inference times for YOLOv4 based 2D object detection and PointPillars based 3D detection.
arXiv Detail & Related papers (2021-06-28T18:59:20Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Detecting Invisible People [58.49425715635312]
We re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects.
We demonstrate that current detection and tracking systems perform dramatically worse on this task.
Second, we build dynamic models that explicitly reason in 3D, making use of observations produced by state-of-the-art monocular depth estimation networks.
arXiv Detail & Related papers (2020-12-15T16:54:45Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem.
Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.
arXiv Detail & Related papers (2020-03-10T00:04:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.