Reconfigurable Intelligent Surface Empowered Over-the-Air Federated Edge
Learning
- URL: http://arxiv.org/abs/2109.02353v1
- Date: Mon, 6 Sep 2021 10:44:54 GMT
- Title: Reconfigurable Intelligent Surface Empowered Over-the-Air Federated Edge
Learning
- Authors: Hang Liu, Zehong Lin, Xiaojun Yuan, and Ying-Jun Angela Zhang
- Abstract summary: Federated edge learning (FEEL) has emerged as a revolutionary paradigm to develop AI services at the edge of 6G wireless networks.
Model communication over wireless channels, especially in uplink model uploading of FEEL, has been widely recognized as a bottleneck that critically limits the efficiency of FEEL.
We study these challenges in over-the-air FEEL and leverage reconfigurable intelligent surface (RIS), a key enabler of future wireless systems, to address these challenges.
- Score: 21.027054663312228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated edge learning (FEEL) has emerged as a revolutionary paradigm to
develop AI services at the edge of 6G wireless networks as it supports
collaborative model training at a massive number of mobile devices. However,
model communication over wireless channels, especially in uplink model
uploading of FEEL, has been widely recognized as a bottleneck that critically
limits the efficiency of FEEL. Although over-the-air computation can alleviate
the excessive cost of radio resources in FEEL model uploading, practical
implementations of over-the-air FEEL still suffer from several challenges,
including strong straggler issues, large communication overheads, and potential
privacy leakage. In this article, we study these challenges in over-the-air
FEEL and leverage reconfigurable intelligent surface (RIS), a key enabler of
future wireless systems, to address these challenges. We study the
state-of-the-art solutions on RIS-empowered FEEL and explore the promising
research opportunities for adopting RIS to enhance FEEL performance.
Related papers
- Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts [80.0638227807621]
generative artificial intelligence (GAI) models have demonstrated superiority over conventional AI methods.
MoE, which uses multiple expert models for prediction through a gate mechanism, proposes possible solutions.
arXiv Detail & Related papers (2024-05-07T11:13:17Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
Reconfigurable intelligent surfaces (RISs) have a revolutionary capability to customize the radio propagation environment for wireless networks.
To fully exploit the advantages of RISs in wireless systems, the phases of the reflecting elements must be jointly designed with conventional communication resources.
This paper provides a review of current optimization methods and artificial intelligence-based methods for handling the constraints imposed by RIS.
arXiv Detail & Related papers (2022-04-28T09:26:14Z) - Channel Estimation and Hybrid Architectures for RIS-Assisted
Communications [6.677785070549226]
Reconfigurable intelligent surfaces (RISs) are considered as potential technologies for the upcoming sixth-generation (6G) wireless communication system.
Benefits brought by deploying one or multiple RISs include increased spectrum and energy efficiency, enhanced connectivity, extended communication coverage, reduced complexity at transceivers.
arXiv Detail & Related papers (2021-04-14T20:28:09Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
We develop a unified communication-learning optimization problem to jointly optimize device selection, over-the-air transceiver design, and RIS configuration.
Numerical experiments show that the proposed design achieves substantial learning accuracy improvement compared with the state-of-the-art approaches.
arXiv Detail & Related papers (2020-11-20T08:54:13Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial [64.77665786141166]
Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal prorogation in wireless networks.
IRS is capable of dynamically altering wireless channels to enhance the communication performance.
Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks.
arXiv Detail & Related papers (2020-07-06T13:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.