Visual Recognition with Deep Learning from Biased Image Datasets
- URL: http://arxiv.org/abs/2109.02357v1
- Date: Mon, 6 Sep 2021 10:56:58 GMT
- Title: Visual Recognition with Deep Learning from Biased Image Datasets
- Authors: Robin Vogel, Stephan Cl\'emen\c{c}on, Pierre Laforgue
- Abstract summary: We show how biasing models can be applied to remedy problems in the context of visual recognition.
Based on the (approximate) knowledge of the biasing mechanisms at work, our approach consists in reweighting the observations.
We propose to use a low dimensional image representation, shared across the image databases.
- Score: 6.10183951877597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practice, and more especially when training deep neural networks, visual
recognition rules are often learned based on various sources of information. On
the other hand, the recent deployment of facial recognition systems with uneven
predictive performances on different population segments highlights the
representativeness issues possibly induced by a naive aggregation of image
datasets. Indeed, sampling bias does not vanish simply by considering larger
datasets, and ignoring its impact may completely jeopardize the generalization
capacity of the learned prediction rules. In this paper, we show how biasing
models, originally introduced for nonparametric estimation in (Gill et al.,
1988), and recently revisited from the perspective of statistical learning
theory in (Laforgue and Cl\'emen\c{c}on, 2019), can be applied to remedy these
problems in the context of visual recognition. Based on the (approximate)
knowledge of the biasing mechanisms at work, our approach consists in
reweighting the observations, so as to form a nearly debiased estimator of the
target distribution. One key condition for our method to be theoretically valid
is that the supports of the distributions generating the biased datasets at
disposal must overlap, and cover the support of the target distribution. In
order to meet this requirement in practice, we propose to use a low dimensional
image representation, shared across the image databases. Finally, we provide
numerical experiments highlighting the relevance of our approach whenever the
biasing functions are appropriately chosen.
Related papers
- Looking at Model Debiasing through the Lens of Anomaly Detection [11.113718994341733]
Deep neural networks are sensitive to bias in the data.
We propose a new bias identification method based on anomaly detection.
We reach state-of-the-art performance on synthetic and real benchmark datasets.
arXiv Detail & Related papers (2024-07-24T17:30:21Z) - Mitigating Bias Using Model-Agnostic Data Attribution [2.9868610316099335]
Mitigating bias in machine learning models is a critical endeavor for ensuring fairness and equity.
We propose a novel approach to address bias by leveraging pixel image attributions to identify and regularize regions of images containing bias attributes.
arXiv Detail & Related papers (2024-05-08T13:00:56Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - DASH: Visual Analytics for Debiasing Image Classification via
User-Driven Synthetic Data Augmentation [27.780618650580923]
Image classification models often learn to predict a class based on irrelevant co-occurrences between input features and an output class in training data.
We call the unwanted correlations "data biases," and the visual features causing data biases "bias factors"
It is challenging to identify and mitigate biases automatically without human intervention.
arXiv Detail & Related papers (2022-09-14T00:44:41Z) - Masked prediction tasks: a parameter identifiability view [49.533046139235466]
We focus on the widely used self-supervised learning method of predicting masked tokens.
We show that there is a rich landscape of possibilities, out of which some prediction tasks yield identifiability, while others do not.
arXiv Detail & Related papers (2022-02-18T17:09:32Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
We evaluate the performance of four state-of-the-art deep face recognition models in the presence of image distortions.
We have observed that image distortions have a relationship with the performance gap of the model across different subgroups.
arXiv Detail & Related papers (2021-08-14T16:49:05Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
We show that neural networks learn to rely on spurious correlation only when it is "easier" to learn than the desired knowledge.
We propose a failure-based debiasing scheme by training a pair of neural networks simultaneously.
Our method significantly improves the training of the network against various types of biases in both synthetic and real-world datasets.
arXiv Detail & Related papers (2020-07-06T07:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.