Mitigating Bias Using Model-Agnostic Data Attribution
- URL: http://arxiv.org/abs/2405.05031v1
- Date: Wed, 8 May 2024 13:00:56 GMT
- Title: Mitigating Bias Using Model-Agnostic Data Attribution
- Authors: Sander De Coninck, Wei-Cheng Wang, Sam Leroux, Pieter Simoens,
- Abstract summary: Mitigating bias in machine learning models is a critical endeavor for ensuring fairness and equity.
We propose a novel approach to address bias by leveraging pixel image attributions to identify and regularize regions of images containing bias attributes.
- Score: 2.9868610316099335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mitigating bias in machine learning models is a critical endeavor for ensuring fairness and equity. In this paper, we propose a novel approach to address bias by leveraging pixel image attributions to identify and regularize regions of images containing significant information about bias attributes. Our method utilizes a model-agnostic approach to extract pixel attributions by employing a convolutional neural network (CNN) classifier trained on small image patches. By training the classifier to predict a property of the entire image using only a single patch, we achieve region-based attributions that provide insights into the distribution of important information across the image. We propose utilizing these attributions to introduce targeted noise into datasets with confounding attributes that bias the data, thereby constraining neural networks from learning these biases and emphasizing the primary attributes. Our approach demonstrates its efficacy in enabling the training of unbiased classifiers on heavily biased datasets.
Related papers
- Utilizing Adversarial Examples for Bias Mitigation and Accuracy Enhancement [3.0820287240219795]
We propose a novel approach to mitigate biases in computer vision models by utilizing counterfactual generation and fine-tuning.
Our approach leverages a curriculum learning framework combined with a fine-grained adversarial loss to fine-tune the model using adversarial examples.
We validate our approach through both qualitative and quantitative assessments, demonstrating improved bias mitigation and accuracy compared to existing methods.
arXiv Detail & Related papers (2024-04-18T00:41:32Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - Improving Fairness in Image Classification via Sketching [14.154930352612926]
Deep neural networks (DNNs) tend to make unfair predictions when the training data are collected from different sub-populations.
We propose to use sketching to handle this phenomenon.
We evaluate our method through extensive experiments on both general scene dataset and medical scene dataset.
arXiv Detail & Related papers (2022-10-31T22:26:32Z) - DASH: Visual Analytics for Debiasing Image Classification via
User-Driven Synthetic Data Augmentation [27.780618650580923]
Image classification models often learn to predict a class based on irrelevant co-occurrences between input features and an output class in training data.
We call the unwanted correlations "data biases," and the visual features causing data biases "bias factors"
It is challenging to identify and mitigate biases automatically without human intervention.
arXiv Detail & Related papers (2022-09-14T00:44:41Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - Data Generation using Texture Co-occurrence and Spatial Self-Similarity
for Debiasing [6.976822832216875]
We propose a novel de-biasing approach that explicitly generates additional images using texture representations of oppositely labeled images.
Every new generated image contains similar spatial information from a source image while transferring textures from a target image of opposite label.
Our model integrates a texture co-occurrence loss that determines whether a generated image's texture is similar to that of the target, and a spatial self-similarity loss that determines whether the spatial details between the generated and source images are well preserved.
arXiv Detail & Related papers (2021-10-15T08:04:59Z) - Visual Recognition with Deep Learning from Biased Image Datasets [6.10183951877597]
We show how biasing models can be applied to remedy problems in the context of visual recognition.
Based on the (approximate) knowledge of the biasing mechanisms at work, our approach consists in reweighting the observations.
We propose to use a low dimensional image representation, shared across the image databases.
arXiv Detail & Related papers (2021-09-06T10:56:58Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.