論文の概要: Interpretable Automated Diagnosis of Retinal Disease using Deep OCT
Analysis
- arxiv url: http://arxiv.org/abs/2109.02436v1
- Date: Fri, 3 Sep 2021 17:59:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-07 16:46:20.097767
- Title: Interpretable Automated Diagnosis of Retinal Disease using Deep OCT
Analysis
- Title(参考訳): 深部oct解析による網膜疾患の解釈可能な自動診断
- Authors: Evan Wen, Max Ehrlich
- Abstract要約: 我々は,OCTスキャンの正確な分類のためのCNNベースモデルを開発した。
我々は、モデルの判断に関する質的および定量的な説明の両方を作成することに重点を置いている。
私たちの仕事は、モデルの決定について、初めて詳細な説明をしました。
- 参考スコア(独自算出の注目度): 7.005458308454871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 30 million Optical Coherence Tomography (OCT) imaging tests are issued every
year to diagnose various retinal diseases, but accurate diagnosis of OCT scans
requires trained ophthalmologists who are still prone to making
misclassifications. With better systems for diagnosis, many cases of vision
loss caused by retinal disease could be entirely avoided. In this work, we
developed a CNN-based model for accurate classification of CNV, DME, Drusen,
and Normal OCT scans. Furthermore, we placed an emphasis on producing both
qualitative and quantitative explanations of the model's decisions. Our
class-weighted EfficientNet B2 classification model performed at 99.79%
accuracy. We then produced and analyzed heatmaps of where in the OCT scan the
model focused. After producing the heatmaps, we created breakdowns of the
specific retinal layers the model focused on. While highly accurate models have
been previously developed, our work is the first to produce detailed
explanations of the model's decisions. The combination of accuracy and
interpretability in our work can be clinically applied for better patient care.
Future work can use a similar model for classification on larger and more
diverse data sets.
- Abstract(参考訳): オプティカル・コヒーレンス・トモグラフィ(oct)の検査は毎年3000万回行われ、様々な網膜疾患を診断するが、octスキャンの正確な診断には、まだ誤分類に苦しむ眼科医が必要となる。
診断システムの改善により、網膜疾患による視力喪失の多くの症例は完全に避けられる。
本研究では, CNV, DME, Drusen, Normal OCTスキャンの正確な分類のためのCNNモデルを開発した。
さらに、モデルの判断に関する質的および定量的な説明の両方を作成することに注力した。
クラス重み付けの efficientnet b2 分類モデルは 99.79% の精度で実行した。
次に,OCTが対象とするモデルをスキャンした場所のヒートマップを作成し,解析した。
熱マップを作成した後、私たちはモデルが焦点を絞った特定の網膜層の分解を作成しました。
従来より高精度なモデルが開発されてきたが,本研究はモデル決定の詳細な説明を行った最初の事例である。
本研究における正確性と解釈性の組み合わせは, 患者のケア改善に臨床応用できる。
将来の作業では、より大きく多様なデータセットの分類に同様のモデルを使用することができる。
関連論文リスト
- Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
本研究は、変性眼疾患である角膜症(keratoconus)の診断のために、訓練済みの8つのCNNを比較した。
MobileNetV2は角膜と正常な症例を誤分類の少ない場合に最も正確なモデルであった。
論文 参考訳(メタデータ) (2024-08-16T20:15:24Z) - Convolutional Neural Network Model for Diabetic Retinopathy Feature
Extraction and Classification [6.236743421605786]
我々は,新しいCNNモデルを作成し,基礎画像入力による糖尿病網膜症の重症度を同定する。
われわれは, 微小動脈瘤, 綿毛, 排出物, 出血の4つのDR特徴を, 畳み込み層を通して分類した。
我々の貢献は、より複雑なモデルに類似した精度で解釈可能なモデルである。
論文 参考訳(メタデータ) (2023-10-16T20:09:49Z) - A Novel Automated Classification and Segmentation for COVID-19 using 3D
CT Scans [5.5957919486531935]
新型コロナウイルス(COVID-19)による肺のCT画像では、地上ガラスの濁度が専門的な診断を必要とする最も一般的な発見である。
一部の研究者は、専門知識の欠如による専門的診断専門医の代替となる、関連するDLモデルを提案する。
肺病変の分類では, 新型コロナウイルス, 肺炎, 正常の3種類で94.52%の精度が得られた。
論文 参考訳(メタデータ) (2022-08-04T22:14:18Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
本稿では,OCT画像から網膜疾患を検出するために,新たな深層アンサンブル畳み込みニューラルネットワークを提案する。
本モデルは,2つの頑健な畳み込みモデルの学習アーキテクチャを用いて,リッチかつマルチレゾリューションな特徴を生成する。
2つのデータセットに関する実験と、他のよく知られた深層畳み込みニューラルネットワークとの比較により、アーキテクチャが分類精度を最大5%向上できることが証明された。
論文 参考訳(メタデータ) (2022-03-03T17:51:01Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
最も一般的な悪性骨腫瘍は骨肉腫である。
CNNは、外科医の作業量を著しく減らし、患者の状態の予後を良くする。
CNNは、より信頼できるパフォーマンスを達成するために、大量のデータをトレーニングする必要があります。
論文 参考訳(メタデータ) (2020-11-02T18:16:17Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。