論文の概要: Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease
- arxiv url: http://arxiv.org/abs/2408.09005v1
- Date: Fri, 16 Aug 2024 20:15:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 23:06:45.891274
- Title: Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease
- Title(参考訳): 角膜疾患検出のためのトランスフォーマーを用いた事前訓練モデルの比較解析
- Authors: Nayeem Ahmed, Md Maruf Rahman, Md Fatin Ishrak, Md Imran Kabir Joy, Md Sanowar Hossain Sabuj, Md. Sadekur Rahman,
- Abstract要約: 本研究は、変性眼疾患である角膜症(keratoconus)の診断のために、訓練済みの8つのCNNを比較した。
MobileNetV2は角膜と正常な症例を誤分類の少ない場合に最も正確なモデルであった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study compares eight pre-trained CNNs for diagnosing keratoconus, a degenerative eye disease. A carefully selected dataset of keratoconus, normal, and suspicious cases was used. The models tested include DenseNet121, EfficientNetB0, InceptionResNetV2, InceptionV3, MobileNetV2, ResNet50, VGG16, and VGG19. To maximize model training, bad sample removal, resizing, rescaling, and augmentation were used. The models were trained with similar parameters, activation function, classification function, and optimizer to compare performance. To determine class separation effectiveness, each model was evaluated on accuracy, precision, recall, and F1-score. MobileNetV2 was the best accurate model in identifying keratoconus and normal cases with few misclassifications. InceptionV3 and DenseNet121 both performed well in keratoconus detection, but they had trouble with questionable cases. In contrast, EfficientNetB0, ResNet50, and VGG19 had more difficulty distinguishing dubious cases from regular ones, indicating the need for model refining and development. A detailed comparison of state-of-the-art CNN architectures for automated keratoconus identification reveals each model's benefits and weaknesses. This study shows that advanced deep learning models can enhance keratoconus diagnosis and treatment planning. Future research should explore hybrid models and integrate clinical parameters to improve diagnostic accuracy and robustness in real-world clinical applications, paving the way for more effective AI-driven ophthalmology tools.
- Abstract(参考訳): 本研究は、変性眼疾患である角膜症(keratoconus)の診断のために、訓練済みの8つのCNNを比較した。
ケラトコヌス,正常,疑わしい症例を慎重に選択した。
テストされたモデルは、DenseNet121、EfficientNetB0、InceptionResNetV2、InceptionV3、MobileNetV2、ResNet50、VGG16、VGG19である。
モデルトレーニングを最大化するために、サンプル除去、リサイズ、再スケーリング、拡張が使用された。
モデルには、同様のパラメータ、アクティベーション関数、分類関数、オプティマイザをトレーニングし、性能を比較した。
クラス分離の有効性を判定するために,各モデルを精度,精度,リコール,F1スコアで評価した。
MobileNetV2は角膜と正常な症例を誤分類の少ない場合に最も正確なモデルであった。
InceptionV3とDenseNet121はどちらも角膜検出では良好に機能したが、疑わしいケースでは問題があった。
対照的に、EfficientNetB0、ResNet50、VGG19は、疑わしいケースを通常のケースと区別することが困難であり、モデル精製と開発の必要性を示している。
ケラトコヌスの自動識別のための最先端CNNアーキテクチャの詳細な比較により、各モデルの利点と弱点が明らかになった。
本研究は,高度な深層学習モデルにより角膜診断と治療計画が向上することを示す。
今後の研究は、ハイブリッドモデルと臨床パラメータを統合して、実世界の臨床応用における診断精度と堅牢性を改善し、より効果的なAI駆動眼科ツールの道を開くべきである。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Detection of keratoconus Diseases using deep Learning [0.0]
最も重篤な角膜疾患の1つとして、角膜は早期に診断が困難であり、失明を引き起こすことがある。
ディープラーニングのアプローチの1つであるCNNは、角膜を正確にタイムリーに診断するための、特に有望なツールとして最近光を当てている。
本研究は,異なるD-CNNモデルを用いて角膜関連疾患の同定を行った。
論文 参考訳(メタデータ) (2023-11-03T15:49:06Z) - Unleashing Modified Deep Learning Models in Efficient COVID19 Detection [0.0]
新型コロナウイルスの感染拡大に伴い、世界的な人口に影響を及ぼしている。
近年のDeep Learningのブレークスルーは、精度と迅速な検出のためのツールとして、COVID19の予測と予測を改善する可能性がある。
最も正確なモデルはMobileNet V3 (97.872%)、DenseNet201 (97.5677%)、GoogleNet Inception V1 (97.643%)である。
論文 参考訳(メタデータ) (2023-10-21T18:24:23Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - COVID-19 Electrocardiograms Classification using CNN Models [1.1172382217477126]
深層学習アルゴリズムの統合による心電図(ECG)データの利用により、COVID-19を自動的に診断するための新しいアプローチが提案されている。
CNNモデルは、VGG16、VGG19、InceptionResnetv2、InceptionV3、Resnet50、Densenet201を含む提案されたフレームワークで利用されている。
この結果,VGG16モデルと比較すると,他のモデルに比べて比較的精度が低いことがわかった。
論文 参考訳(メタデータ) (2021-12-15T08:06:45Z) - Interpretable Automated Diagnosis of Retinal Disease using Deep OCT
Analysis [7.005458308454871]
我々は,OCTスキャンの正確な分類のためのCNNベースモデルを開発した。
我々は、モデルの判断に関する質的および定量的な説明の両方を作成することに重点を置いている。
私たちの仕事は、モデルの決定について、初めて詳細な説明をしました。
論文 参考訳(メタデータ) (2021-09-03T17:59:34Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - COVID-19 Classification Using Staked Ensembles: A Comprehensive Analysis [0.0]
新型コロナウイルスは大量死亡率で増加し、WHOはパンデミックと宣言した。
効率的かつ迅速な診断が不可欠である。
逆転写ポリメラーゼ鎖反応(RTPCR)テストを行い、SARS-CoV-2の存在を検出する。
代わりに胸部CT(または胸部X線)を高速かつ正確な診断に用いることができる。
論文 参考訳(メタデータ) (2020-10-07T07:43:57Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。