論文の概要: Intrusion Detection using Network Traffic Profiling and Machine Learning
for IoT
- arxiv url: http://arxiv.org/abs/2109.02544v1
- Date: Mon, 6 Sep 2021 15:30:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-07 16:24:45.334145
- Title: Intrusion Detection using Network Traffic Profiling and Machine Learning
for IoT
- Title(参考訳): IoTのためのネットワークトラフィックプロファイリングと機械学習を用いた侵入検出
- Authors: Joseph Rose, Matthew Swann, Gueltoum Bendiab, Stavros Shiaeles,
Nicholas Kolokotronis
- Abstract要約: 単一の妥協されたデバイスがネットワーク全体に影響を与え、セキュリティと物理的に大きなダメージを与える可能性がある。
本稿では、ネットワークプロファイリングと機械学習を用いて、サイバー攻撃に対してIoTを保護する可能性について検討する。
- 参考スコア(独自算出の注目度): 2.309914459672557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid increase in the use of IoT devices brings many benefits to the
digital society, ranging from improved efficiency to higher productivity.
However, the limited resources and the open nature of these devices make them
vulnerable to various cyber threats. A single compromised device can have an
impact on the whole network and lead to major security and physical damages.
This paper explores the potential of using network profiling and machine
learning to secure IoT against cyber-attacks. The proposed anomaly-based
intrusion detection solution dynamically and actively profiles and monitors all
networked devices for the detection of IoT device tampering attempts as well as
suspicious network transactions. Any deviation from the defined profile is
considered to be an attack and is subject to further analysis. Raw traffic is
also passed on to the machine learning classifier for examination and
identification of potential attacks. Performance assessment of the proposed
methodology is conducted on the Cyber-Trust testbed using normal and malicious
network traffic. The experimental results show that the proposed anomaly
detection system delivers promising results with an overall accuracy of 98.35%
and 0.98% of false-positive alarms.
- Abstract(参考訳): IoTデバイスの使用の急速な増加は、効率の改善から生産性の向上に至るまで、デジタル社会に多くのメリットをもたらします。
しかし、限られたリソースとこれらのデバイスのオープンな性質は、様々なサイバー脅威に対して脆弱である。
単一のデバイスがネットワーク全体に影響を与え、セキュリティと物理的ダメージを与える可能性がある。
本稿では,ネットワークプロファイリングと機械学習によるiotのサイバー攻撃対策の可能性について検討する。
提案手法は,iotデバイスの改ざんや不審なネットワークトランザクションを検出するために,ネットワークデバイスをすべて動的かつアクティブにプロファイルし,監視するものである。
定義されたプロファイルからの逸脱は攻撃と見なされ、さらなる分析の対象となる。
生トラフィックは、潜在的攻撃の検査と識別のために機械学習分類器に渡される。
提案手法の性能評価は,通常のネットワークトラフィックと悪意のあるネットワークトラフィックを用いたサイバートラストテストで実施する。
実験の結果, 提案手法は, 98.35%, 0.98%の誤検出率で有望な結果が得られることがわかった。
関連論文リスト
- Beyond Detection: Leveraging Large Language Models for Cyber Attack Prediction in IoT Networks [4.836070911511429]
本稿では,Long Short Term Memory(LSTM)ネットワークとLarge Language Models(LLM)を組み合わせた新しいネットワーク侵入予測フレームワークを提案する。
我々のフレームワークは、CICIoT2023 IoT攻撃データセットに基づいて評価され、予測能力の大幅な改善を示し、全体的な精度は98%である。
論文 参考訳(メタデータ) (2024-08-26T06:57:22Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Towards a Near-real-time Protocol Tunneling Detector based on Machine Learning Techniques [0.0]
本稿では,機械学習技術を用いて企業のネットワークトラフィックをほぼリアルタイムで検査するプロトコルトンネル検出器のプロトタイプを提案する。
検出器は暗号化されていないネットワークフローを監視し、起こりうる攻撃や異常を検出する特徴を抽出する。
その結果、全体的な精度は97.1%であり、F1スコアは95.6%である。
論文 参考訳(メタデータ) (2023-09-22T09:08:43Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
モノのインターネット(IoT)ネットワークは、異常なトラフィックよりも遥かに良質なトラフィックを含んでいる。
既存研究の多くは、少数民族の検出率を向上させるために、多数民族の検出率を犠牲にすることに焦点を当てている。
我々はS2CGAN-IDSという軽量なフレームワークを提案し、データ空間と特徴空間の両方においてマイノリティなカテゴリの数を拡大する。
論文 参考訳(メタデータ) (2023-06-06T14:19:23Z) - OMINACS: Online ML-Based IoT Network Attack Detection and Classification
System [0.0]
本稿では,オンライン攻撃検知とネットワークトラフィック分類システムを提案する。
ストリーム機械学習、ディープラーニング、およびアンサンブルラーニングのテクニックを組み合わせる。
悪意のあるトラフィックフローの存在を検出し、それらが表現する攻撃の種類に応じてそれらを分類することができる。
論文 参考訳(メタデータ) (2023-02-18T04:06:24Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
モノのインターネット(Internet of Things, IoT)は、デバイスやものをインターネット上でコントロールすることによって、生活を変えてきた。
IoTネットワークをダウンさせるために、攻撃者はこれらのデバイスを使用してさまざまなネットワーク攻撃を行うことができる。
本稿では,非ラベルデータセットからIoTネットワークにおける新たな,あるいは未知の攻撃を検出可能な,教師なしアンサンブル学習モデルを開発した。
論文 参考訳(メタデータ) (2022-07-16T11:12:32Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
脆弱性データベースのデータと組み合わせたデバイスタイプの識別は、ネットワーク内の脆弱なiotデバイスを特定できる。
信頼性の高いIoTデバイスタイプ識別のための2つの深層学習手法を提案し,評価する。
論文 参考訳(メタデータ) (2021-02-16T14:49:34Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。