Efficient Learning of Optimal Individualized Treatment Rules for
Heteroscedastic or Misspecified Treatment-Free Effect Models
- URL: http://arxiv.org/abs/2109.02570v1
- Date: Mon, 6 Sep 2021 16:11:42 GMT
- Title: Efficient Learning of Optimal Individualized Treatment Rules for
Heteroscedastic or Misspecified Treatment-Free Effect Models
- Authors: Weibin Mo and Yufeng Liu
- Abstract summary: We propose an Efficient Learning framework for finding an optimal individualized treatment rule (ITR) in the multi-armed treatment setting.
We show that the proposed E-Learning is optimal among a regular class of semiparametric estimates that can allow treatment-free effect misspecification.
- Score: 3.7311680121118345
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent development in data-driven decision science has seen great advances in
individualized decision making. Given data with individual covariates,
treatment assignments and outcomes, researchers can search for the optimal
individualized treatment rule (ITR) that maximizes the expected outcome.
Existing methods typically require initial estimation of some nuisance models.
The double robustness property that can protect from misspecification of either
the treatment-free effect or the propensity score has been widely advocated.
However, when model misspecification exists, a doubly robust estimate can be
consistent but may suffer from downgraded efficiency. Other than potential
misspecified nuisance models, most existing methods do not account for the
potential problem when the variance of outcome is heterogeneous among
covariates and treatment. We observe that such heteroscedasticity can greatly
affect the estimation efficiency of the optimal ITR. In this paper, we
demonstrate that the consequences of misspecified treatment-free effect and
heteroscedasticity can be unified as a covariate-treatment dependent variance
of residuals. To improve efficiency of the estimated ITR, we propose an
Efficient Learning (E-Learning) framework for finding an optimal ITR in the
multi-armed treatment setting. We show that the proposed E-Learning is optimal
among a regular class of semiparametric estimates that can allow treatment-free
effect misspecification. In our simulation study, E-Learning demonstrates its
effectiveness if one of or both misspecified treatment-free effect and
heteroscedasticity exist. Our analysis of a Type 2 Diabetes Mellitus (T2DM)
observational study also suggests the improved efficiency of E-Learning.
Related papers
- Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
We propose a framework that accommodates adjustment for any subset of information expressed by the covariates.
Based on our theoretical results, we propose the Debiased Outcome-adapted Propensity Estorimator (DOPE) for efficient estimation of the average treatment effect (ATE)
Our results show that the DOPE provides an efficient and robust methodology for ATE estimation in various observational settings.
arXiv Detail & Related papers (2024-02-20T13:02:51Z) - A Weighted Prognostic Covariate Adjustment Method for Efficient and
Powerful Treatment Effect Inferences in Randomized Controlled Trials [0.28087862620958753]
A crucial task for a randomized controlled trial (RCT) is to specify a statistical method that can yield an efficient estimator and powerful test for the treatment effect.
Training a generative AI algorithm on historical control data enables one to construct a digital twin generator (DTG) for RCT participants.
DTG generates a probability distribution for RCT participants' potential control outcome.
arXiv Detail & Related papers (2023-09-25T16:14:13Z) - Efficient estimation of weighted cumulative treatment effects by
double/debiased machine learning [3.086361225427304]
We propose a class of one-step cross-fitted double/debiased machine learning estimators for the weighted cumulative causal effect.
We apply the proposed methods to real-world observational data from a UK primary care database to compare the effects of anti-diabetic drugs on cancer outcomes.
arXiv Detail & Related papers (2023-05-03T18:19:18Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Proximal Causal Learning of Conditional Average Treatment Effects [0.0]
We propose a tailored two-stage loss function for learning heterogeneous treatment effects.
Our proposed estimator can be implemented by off-the-shelf loss-minimizing machine learning methods.
arXiv Detail & Related papers (2023-01-26T02:56:36Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - Estimating heterogeneous survival treatment effect in observational data
using machine learning [9.951103976634407]
Methods for estimating heterogeneous treatment effect in observational data have largely focused on continuous or binary outcomes.
Using flexible machine learning methods in the counterfactual framework is a promising approach to address challenges due to complex individual characteristics.
arXiv Detail & Related papers (2020-08-17T01:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.