Efficient ADMM-based Algorithms for Convolutional Sparse Coding
- URL: http://arxiv.org/abs/2109.02969v1
- Date: Tue, 7 Sep 2021 09:49:10 GMT
- Title: Efficient ADMM-based Algorithms for Convolutional Sparse Coding
- Authors: Farshad G. Veshki and Sergiy A. Vorobyov
- Abstract summary: This letter presents a solution to a convolutional least-squares fitting subproblem.
We also use the same approach for developing an efficient convolutional dictionary learning method.
We propose a novel algorithm for convolutional sparse coding with a constraint on the approximation error.
- Score: 38.31173467674558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional sparse coding improves on the standard sparse approximation by
incorporating a global shift-invariant model. The most efficient convolutional
sparse coding methods are based on the alternating direction method of
multipliers and the convolution theorem. The only major difference between
these methods is how they approach a convolutional least-squares fitting
subproblem. This letter presents a solution to this subproblem, which improves
the efficiency of the state-of-the-art algorithms. We also use the same
approach for developing an efficient convolutional dictionary learning method.
Furthermore, we propose a novel algorithm for convolutional sparse coding with
a constraint on the approximation error.
Related papers
- An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Nystrom Method for Accurate and Scalable Implicit Differentiation [25.29277451838466]
We show that the Nystrom method consistently achieves comparable or even superior performance to other approaches.
The proposed method avoids numerical instability and can be efficiently computed in matrix operations without iterations.
arXiv Detail & Related papers (2023-02-20T02:37:26Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Converting ADMM to a Proximal Gradient for Convex Optimization Problems [4.56877715768796]
In sparse estimation, such as fused lasso and convex clustering, we apply either the proximal gradient method or the alternating direction method of multipliers (ADMM) to solve the problem.
This paper proposes a general method for converting the ADMM solution to the proximal gradient method, assuming that the constraints and objectives are strongly convex.
We show by numerical experiments that we can obtain a significant improvement in terms of efficiency.
arXiv Detail & Related papers (2021-04-22T07:41:12Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - Alternating Direction Method of Multipliers for Quantization [15.62692130672419]
We study the performance of the Alternating Direction Method of Multipliers for Quantization ($texttADMM-Q$) algorithm.
We develop a few variants of $texttADMM-Q$ that can handle inexact update rules.
We empirically evaluate the efficacy of our proposed approaches.
arXiv Detail & Related papers (2020-09-08T01:58:02Z) - Revisiting Co-Occurring Directions: Sharper Analysis and Efficient
Algorithm for Sparse Matrices [23.22254890452548]
We study the streaming model for approximate matrix multiplication (AMM)
We are interested in the scenario that the algorithm can only take one pass over the data with limited memory.
The state-of-the-art deterministic sketching algorithm for streaming AMM is the co-occurring directions (COD)
arXiv Detail & Related papers (2020-09-05T15:35:59Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.