論文の概要: Infusing Future Information into Monotonic Attention Through Language
Models
- arxiv url: http://arxiv.org/abs/2109.03121v1
- Date: Tue, 7 Sep 2021 14:32:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 18:19:38.839147
- Title: Infusing Future Information into Monotonic Attention Through Language
Models
- Title(参考訳): 言語モデルによるモノトニック注意への将来の情報注入
- Authors: Mohd Abbas Zaidi, Sathish Indurthi, Beomseok Lee, Nikhil Kumar
Lakumarapu, Sangha Kim
- Abstract要約: SNMTモデルは、ソースシーケンスを処理する前にターゲットシーケンスを出力し始める。
十分な情報がないため、単調な注意が読み書きの判断を下す可能性がある。
本稿では,モノトニックな注意を外部言語モデルで支援し,意思決定を改善する枠組みを提案する。
- 参考スコア(独自算出の注目度): 3.2655040724537634
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Simultaneous neural machine translation(SNMT) models start emitting the
target sequence before they have processed the source sequence. The recent
adaptive policies for SNMT use monotonic attention to perform read/write
decisions based on the partial source and target sequences. The lack of
sufficient information might cause the monotonic attention to take poor
read/write decisions, which in turn negatively affects the performance of the
SNMT model. On the other hand, human translators make better read/write
decisions since they can anticipate the immediate future words using linguistic
information and domain knowledge.Motivated by human translators, in this work,
we propose a framework to aid monotonic attention with an external language
model to improve its decisions.We conduct experiments on the MuST-C
English-German and English-French speech-to-text translation tasks to show the
effectiveness of the proposed framework.The proposed SNMT method improves the
quality-latency trade-off over the state-of-the-art monotonic multihead
attention.
- Abstract(参考訳): 同時ニューラルマシン翻訳(snmt)モデルは、ソースシーケンスを処理する前にターゲットシーケンスを出力し始める。
SNMTの最近の適応ポリシーでは、部分的ソースとターゲットシーケンスに基づいて読み書き決定を行うために単調な注意を用いる。
十分な情報が不足すると、単調な注意が読み書きの決定を下すことになり、SNMTモデルの性能に悪影響を及ぼす可能性がある。
On the other hand, human translators make better read/write decisions since they can anticipate the immediate future words using linguistic information and domain knowledge.Motivated by human translators, in this work, we propose a framework to aid monotonic attention with an external language model to improve its decisions.We conduct experiments on the MuST-C English-German and English-French speech-to-text translation tasks to show the effectiveness of the proposed framework.The proposed SNMT method improves the quality-latency trade-off over the state-of-the-art monotonic multihead attention.
関連論文リスト
- LANDeRMT: Detecting and Routing Language-Aware Neurons for Selectively Finetuning LLMs to Machine Translation [43.26446958873554]
大規模言語モデル(LLM)は,バイリンガルの監督が限られているにもかかわらず,多言語翻訳において有望な結果を示している。
大規模言語モデル(LLM)の最近の進歩は,バイリンガルの監督が限定された場合でも,多言語翻訳において有望な結果を示している。
LandeRMT は LLM を textbfMachine textbfTranslation に選択的に微調整するフレームワークである。
論文 参考訳(メタデータ) (2024-09-29T02:39:42Z) - CBSiMT: Mitigating Hallucination in Simultaneous Machine Translation
with Weighted Prefix-to-Prefix Training [13.462260072313894]
同時機械翻訳(SiMT)は、全文が利用可能になる前に翻訳を開始することを必要とする課題である。
Prefix-to-フレームワークはSiMTに適用されることが多く、部分的なソースプレフィックスのみを使用してターゲットトークンを予測することを学ぶ。
本稿では,モデル信頼を利用して幻覚トークンを知覚する信頼に基づく同時機械翻訳フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-07T02:44:45Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
我々は「あいまいな文」を翻訳する大規模言語モデルの能力について研究する。
実験の結果,提案手法はDeepLやNLLBといった最先端システムと5つの言語方向のうち4つで一致し,性能を向上できることがわかった。
論文 参考訳(メタデータ) (2023-09-20T22:22:52Z) - The Interpreter Understands Your Meaning: End-to-end Spoken Language
Understanding Aided by Speech Translation [13.352795145385645]
音声翻訳(ST)は、エンドツーエンドの音声言語理解のために、音声モデルを事前訓練する良い方法である。
我々は,本モデルが単言語および多言語意図分類に基づくベースラインよりも高い性能を達成することを示す。
また、音声要約のための新しいベンチマークデータセットを作成し、低リソース/ゼロショットを英語からフランス語またはスペイン語に転送する。
論文 参考訳(メタデータ) (2023-05-16T17:53:03Z) - Anticipation-free Training for Simultaneous Translation [70.85761141178597]
同時翻訳(SimulMT)は、原文が完全に利用可能になる前に翻訳を開始することで翻訳プロセスを高速化する。
既存の手法は遅延を増大させるか、SimulMTモデルに適応的な読み書きポリシーを導入し、局所的なリオーダーを処理し、翻訳品質を改善する。
本稿では,翻訳過程をモノトニック翻訳ステップと並べ替えステップに分解する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-30T16:29:37Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Language Modeling, Lexical Translation, Reordering: The Training Process
of NMT through the Lens of Classical SMT [64.1841519527504]
ニューラルマシン翻訳は、翻訳プロセス全体をモデル化するために、単一のニューラルネットワークを使用する。
ニューラルネットワーク翻訳はデファクトスタンダードであるにもかかわらず、NMTモデルがトレーニングの過程でどのように異なる能力を獲得するのかは、まだ明らかになっていない。
論文 参考訳(メタデータ) (2021-09-03T09:38:50Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
クロスリンガルプリトレーニングは、2つの言語の語彙的表現と高レベル表現を整列させるモデルを必要とする。
これまでの研究では、これは表現が十分に整合していないためです。
本稿では,語彙レベルの情報で事前学習するバイリンガルマスク言語モデルを,型レベルのクロスリンガルサブワード埋め込みを用いて強化する。
論文 参考訳(メタデータ) (2021-03-18T21:17:58Z) - Self-Learning for Zero Shot Neural Machine Translation [13.551731309506874]
本研究は、並列データを共有するピボット言語を仮定せずに学習するゼロショットNMTモデリング手法を提案する。
教師なしNMTと比較して、ドメインミスマッチ設定でも一貫した改善が観察される。
論文 参考訳(メタデータ) (2021-03-10T09:15:19Z) - Reusing a Pretrained Language Model on Languages with Limited Corpora
for Unsupervised NMT [129.99918589405675]
本稿では,オープンソース言語上でのみ事前訓練されたLMを再利用する効果的な手法を提案する。
モノリンガルLMは両言語で微調整され、UNMTモデルの初期化に使用される。
我々のアプローチであるRE-LMは、英語・マケドニア語(En-Mk)と英語・アルバニア語(En-Sq)の競合言語間事前学習モデル(XLM)より優れています。
論文 参考訳(メタデータ) (2020-09-16T11:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。