論文の概要: Aspect-Aware Decomposition for Opinion Summarization
- arxiv url: http://arxiv.org/abs/2501.17191v2
- Date: Tue, 18 Feb 2025 06:30:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:03:54.054749
- Title: Aspect-Aware Decomposition for Opinion Summarization
- Title(参考訳): オピニオン要約のためのアスペクトアウェア分解
- Authors: Miao Li, Jey Han Lau, Eduard Hovy, Mirella Lapata,
- Abstract要約: 本稿では、アスペクト識別、意見統合、メタレビュー合成のタスクを分離する、レビューアスペクトによってガイドされるモジュラーアプローチを提案する。
科学研究、ビジネス、製品ドメインを表すデータセットをまたいだ実験を行います。
その結果,本手法は強いベースラインモデルと比較して,より基底的なサマリーを生成することがわかった。
- 参考スコア(独自算出の注目度): 82.38097397662436
- License:
- Abstract: Opinion summarization plays a key role in deriving meaningful insights from large-scale online reviews. To make this process more explainable and grounded, we propose a modular approach guided by review aspects which separates the tasks of aspect identification, opinion consolidation, and meta-review synthesis, enabling greater transparency and ease of inspection. We conduct extensive experiments across datasets representing scientific research, business, and product domains. Results show that our method generates more grounded summaries compared to strong baseline models, as verified through automated and human evaluations. Additionally, our modular approach, which incorporates reasoning based on review aspects, produces more informative intermediate outputs than knowledge-agnostic decomposed prompting. These intermediate outputs can also effectively support humans in summarizing opinions from large volumes of reviews.
- Abstract(参考訳): 意見要約は、大規模なオンラインレビューから有意義な洞察を得る上で重要な役割を果たしている。
このプロセスをより説明しやすく、基礎づけるために、アスペクト識別、意見統合、メタレビュー合成といったタスクを分離し、透明性と検査の容易さを高めるための、レビューアスペクトによってガイドされたモジュラーアプローチを提案する。
科学研究、ビジネス、製品ドメインを表すデータセットにわたる広範な実験を行います。
以上の結果から,本手法は,強力なベースラインモデルと比較して,より基礎的な要約を生成することが確認された。
さらに、レビューの側面に基づく推論を取り入れたモジュラーアプローチでは、知識に依存しない分解プロンプトよりも、より情報的な中間出力が生成される。
これらの中間出力は、大量のレビューからの意見の要約において、人間を効果的に支援することができる。
関連論文リスト
- Large-Scale and Multi-Perspective Opinion Summarization with Diverse
Review Subsets [23.515892409202344]
SUBSUMMは大規模多視点意見要約のための教師付き要約フレームワークである。
数百のインプットレビューから、プロ、コン、そして検証の要約を生成する。
論文 参考訳(メタデータ) (2023-10-20T08:08:13Z) - Human-in-the-loop Abstractive Dialogue Summarization [61.4108097664697]
我々は、異なるレベルの人間のフィードバックをトレーニングプロセスに組み込むことを提案する。
これにより、モデルをガイドして、人間が要約に用いている振る舞いを捉えることができます。
論文 参考訳(メタデータ) (2022-12-19T19:11:27Z) - Automatic Text Summarization Methods: A Comprehensive Review [1.6114012813668934]
本研究は,要約手法,使用する手法,標準データセット,評価指標,今後の研究範囲などのテキスト要約概念を詳細に分析する。
論文 参考訳(メタデータ) (2022-03-03T10:45:00Z) - Learning Opinion Summarizers by Selecting Informative Reviews [81.47506952645564]
31,000以上の製品のユーザレビューと組み合わせた大規模な要約データセットを収集し、教師付きトレーニングを可能にします。
多くのレビューの内容は、人間が書いた要約には反映されず、したがってランダムなレビューサブセットで訓練された要約者は幻覚する。
我々は、これらのサブセットで表現された意見を要約し、レビューの情報的サブセットを選択するための共同学習としてタスクを定式化する。
論文 参考訳(メタデータ) (2021-09-09T15:01:43Z) - Aspect-Controllable Opinion Summarization [58.5308638148329]
アスペクトクエリに基づいてカスタマイズした要約を生成する手法を提案する。
レビューコーパスを用いて、アスペクトコントローラで強化された(リビュー、サマリ)ペアの合成トレーニングデータセットを作成する。
合成データセットを用いて事前学習したモデルを微調整し、アスペクトコントローラを変更することでアスペクト固有の要約を生成する。
論文 参考訳(メタデータ) (2021-09-07T16:09:17Z) - Unsupervised Opinion Summarization with Content Planning [58.5308638148329]
要約モデルにコンテンツプランニングを明示的に組み込むことで、より高い品質のアウトプットが得られることを示す。
また、より自然な合成データセットを作成し、実世界の文書と要約のペアに似ている。
当社のアプローチは,情報的,一貫性,流動的な要約を生成する上で,競争モデルよりも優れています。
論文 参考訳(メタデータ) (2020-12-14T18:41:58Z) - OpinionDigest: A Simple Framework for Opinion Summarization [22.596995566588422]
このフレームワークは、アスペクトベースの感性分析モデルを使用して、レビューから意見フレーズを抽出し、トランスフォーマーモデルを使用して、これらの抽出から元のレビューを再構築する。
選択された意見は、訓練されたトランスフォーマーモデルへの入力として使用され、それらが意見要約に言語化される。
OpinionDigestは、特定のユーザーのニーズに合わせてカスタマイズされた要約を生成することもできる。
論文 参考訳(メタデータ) (2020-05-05T01:22:29Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
オピニオン要約は、複数の文書で表現された主観的な情報を反映したテキストの自動生成である。
本研究では,要約テキストの生成をブートストラップするのには,少数の要約でも十分であることを示す。
提案手法は, 従来の抽出法および抽象法を, 自動的, 人的評価において大きく上回っている。
論文 参考訳(メタデータ) (2020-04-30T15:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。