Self-Supervised Representation Learning using Visual Field Expansion on
Digital Pathology
- URL: http://arxiv.org/abs/2109.03299v1
- Date: Tue, 7 Sep 2021 19:20:01 GMT
- Title: Self-Supervised Representation Learning using Visual Field Expansion on
Digital Pathology
- Authors: Joseph Boyd, Mykola Liashuha, Eric Deutsch, Nikos Paragios, Stergios
Christodoulidis, Maria Vakalopoulou
- Abstract summary: A key challenge in the analysis of such images is their size, which can run into the gigapixels.
We propose a novel generative framework that can learn powerful representations for such tiles by learning to plausibly expand their visual field.
Our model learns to generate different tissue types with fine details, while simultaneously learning powerful representations that can be used for different clinical endpoints.
- Score: 7.568373895297608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The examination of histopathology images is considered to be the gold
standard for the diagnosis and stratification of cancer patients. A key
challenge in the analysis of such images is their size, which can run into the
gigapixels and can require tedious screening by clinicians. With the recent
advances in computational medicine, automatic tools have been proposed to
assist clinicians in their everyday practice. Such tools typically process
these large images by slicing them into tiles that can then be encoded and
utilized for different clinical models. In this study, we propose a novel
generative framework that can learn powerful representations for such tiles by
learning to plausibly expand their visual field. In particular, we developed a
progressively grown generative model with the objective of visual field
expansion. Thus trained, our model learns to generate different tissue types
with fine details, while simultaneously learning powerful representations that
can be used for different clinical endpoints, all in a self-supervised way. To
evaluate the performance of our model, we conducted classification experiments
on CAMELYON17 and CRC benchmark datasets, comparing favorably to other
self-supervised and pre-trained strategies that are commonly used in digital
pathology. Our code is available at https://github.com/jcboyd/cdpath21-gan.
Related papers
- Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Deepfake histological images for enhancing digital pathology [0.40631409309544836]
We develop a generative adversarial network model that synthesizes pathology images constrained by class labels.
We investigate the ability of this framework in synthesizing realistic prostate and colon tissue images.
We extend the approach to significantly more complex images from colon biopsies and show that the complex microenvironment in such tissues can also be reproduced.
arXiv Detail & Related papers (2022-06-16T17:11:08Z) - Global Contrast Masked Autoencoders Are Powerful Pathological
Representation Learners [11.162001837248166]
We propose a self-supervised learning model, the global contrast-masked autoencoder (GCMAE), which can train the encoder to have the ability to represent local-global features of pathological images.
The ability of the GCMAE to learn migratable representations was demonstrated through extensive experiments using a total of three different disease-specific hematoxylin and eosin (HE)-stained pathology datasets.
arXiv Detail & Related papers (2022-05-18T16:28:56Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
We conduct a search for good representations in pathology by training a variety of self-supervised models with validation on a variety of weakly-supervised and patch-level tasks.
Our key finding is in discovering that Vision Transformers using DINO-based knowledge distillation are able to learn data-efficient and interpretable features in histology images.
arXiv Detail & Related papers (2022-03-01T16:14:41Z) - Pathological Analysis of Blood Cells Using Deep Learning Techniques [0.0]
A neural based network has been proposed for classification of blood cells images into various categories.
The performance of proposed model is better than existing standard architectures and work done by various researchers.
arXiv Detail & Related papers (2021-11-05T05:37:10Z) - Colorectal Polyp Classification from White-light Colonoscopy Images via
Domain Alignment [57.419727894848485]
A computer-aided diagnosis system is required to assist accurate diagnosis from colonoscopy images.
Most previous studies at-tempt to develop models for polyp differentiation using Narrow-Band Imaging (NBI) or other enhanced images.
We propose a novel framework based on a teacher-student architecture for the accurate colorectal polyp classification.
arXiv Detail & Related papers (2021-08-05T09:31:46Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.